
rsync

26 Jan 2014

rsync(1)

26 Jan 2014

NAME

rsync - a fast, versatile, remote (and local) file-copying tool

SYNOPSIS

Local: rsync [OPTION...] SRC... [DEST]

Access via remote shell:
 Pull: rsync [OPTION...] [USER@]HOST:SRC... [DEST]
 Push: rsync [OPTION...] SRC... [USER@]HOST:DEST

Access via rsync daemon:
 Pull: rsync [OPTION...] [USER@]HOST::SRC... [DEST]
 rsync [OPTION...] rsync://[USER@]HOST[:PORT]/SRC... [DEST]
 Push: rsync [OPTION...] SRC... [USER@]HOST::DEST
 rsync [OPTION...] SRC... rsync://[USER@]HOST[:PORT]/DEST

Usages with just one SRC arg and no DEST arg will list the source files instead
of copying.

DESCRIPTION

Rsync is a fast and extraordinarily versatile file copying tool. It can copy
locally, to/from another host over any remote shell, or to/from a remote rsync
daemon. It offers a large number of options that control every aspect of its
behavior and permit very flexible specification of the set of files to be copied. It
is famous for its delta-transfer algorithm, which reduces the amount of data
sent over the network by sending only the differences between the source files
and the existing files in the destination. Rsync is widely used for backups and
mirroring and as an improved copy command for everyday use.

Rsync finds files that need to be transferred using a "quick check" algorithm
(by default) that looks for files that have changed in size or in last-modified
time. Any changes in the other preserved attributes (as requested by options)

rsync http://rsync.samba.org/ftp/rsync/rsync.html

1 de 67 28/04/14 13:58

are made on the destination file directly when the quick check indicates that
the file's data does not need to be updated.

Some of the additional features of rsync are:

support for copying links, devices, owners, groups, and permissions
exclude and exclude-from options similar to GNU tar
a CVS exclude mode for ignoring the same files that CVS would ignore
can use any transparent remote shell, including ssh or rsh
does not require super-user privileges
pipelining of file transfers to minimize latency costs
support for anonymous or authenticated rsync daemons (ideal for
mirroring)

GENERAL

Rsync copies files either to or from a remote host, or locally on the current host
(it does not support copying files between two remote hosts).

There are two different ways for rsync to contact a remote system: using a
remote-shell program as the transport (such as ssh or rsh) or contacting an
rsync daemon directly via TCP. The remote-shell transport is used whenever
the source or destination path contains a single colon (:) separator after a host
specification. Contacting an rsync daemon directly happens when the source or
destination path contains a double colon (::) separator after a host
specification, OR when an rsync:// URL is specified (see also the "USING
RSYNC-DAEMON FEATURES VIA A REMOTE-SHELL CONNECTION" section
for an exception to this latter rule).

As a special case, if a single source arg is specified without a destination, the
files are listed in an output format similar to "ls -l".

As expected, if neither the source or destination path specify a remote host,
the copy occurs locally (see also the --list-only option).

Rsync refers to the local side as the "client" and the remote side as the
"server". Don't confuse "server" with an rsync daemon -- a daemon is always a
server, but a server can be either a daemon or a remote-shell spawned process.

SETUP

See the file README for installation instructions.

Once installed, you can use rsync to any machine that you can access via a
remote shell (as well as some that you can access using the rsync
daemon-mode protocol). For remote transfers, a modern rsync uses ssh for its
communications, but it may have been configured to use a different remote
shell by default, such as rsh or remsh.

You can also specify any remote shell you like, either by using the -e command

rsync http://rsync.samba.org/ftp/rsync/rsync.html

2 de 67 28/04/14 13:58

line option, or by setting the RSYNC_RSH environment variable.

Note that rsync must be installed on both the source and destination machines.

USAGE

You use rsync in the same way you use rcp. You must specify a source and a
destination, one of which may be remote.

Perhaps the best way to explain the syntax is with some examples:

rsync -t *.c foo:src/

This would transfer all files matching the pattern *.c from the current directory
to the directory src on the machine foo. If any of the files already exist on the
remote system then the rsync remote-update protocol is used to update the file
by sending only the differences. See the tech report for details.

rsync -avz foo:src/bar /data/tmp

This would recursively transfer all files from the directory src/bar on the
machine foo into the /data/tmp/bar directory on the local machine. The files are
transferred in "archive" mode, which ensures that symbolic links, devices,
attributes, permissions, ownerships, etc. are preserved in the transfer.
Additionally, compression will be used to reduce the size of data portions of the
transfer.

rsync -avz foo:src/bar/ /data/tmp

A trailing slash on the source changes this behavior to avoid creating an
additional directory level at the destination. You can think of a trailing / on a
source as meaning "copy the contents of this directory" as opposed to "copy
the directory by name", but in both cases the attributes of the containing
directory are transferred to the containing directory on the destination. In
other words, each of the following commands copies the files in the same way,
including their setting of the attributes of /dest/foo:

rsync -av /src/foo /dest
rsync -av /src/foo/ /dest/foo

Note also that host and module references don't require a trailing slash to copy
the contents of the default directory. For example, both of these copy the
remote directory's contents into "/dest":

rsync -av host: /dest
rsync -av host::module /dest

You can also use rsync in local-only mode, where both the source and
destination don't have a ':' in the name. In this case it behaves like an improved
copy command.

Finally, you can list all the (listable) modules available from a particular rsync
daemon by leaving off the module name:

rsync http://rsync.samba.org/ftp/rsync/rsync.html

3 de 67 28/04/14 13:58

rsync somehost.mydomain.com::

See the following section for more details.

ADVANCED USAGE

The syntax for requesting multiple files from a remote host is done by
specifying additional remote-host args in the same style as the first, or with the
hostname omitted. For instance, all these work:

rsync -av host:file1 :file2 host:file{3,4} /dest/
rsync -av host::modname/file{1,2} host::modname/file3 /dest/
rsync -av host::modname/file1 ::modname/file{3,4}

Older versions of rsync required using quoted spaces in the SRC, like these
examples:

rsync -av host:'dir1/file1 dir2/file2' /dest
rsync host::'modname/dir1/file1 modname/dir2/file2' /dest

This word-splitting still works (by default) in the latest rsync, but is not as easy
to use as the first method.

If you need to transfer a filename that contains whitespace, you can either
specify the --protect-args (-s) option, or you'll need to escape the whitespace
in a way that the remote shell will understand. For instance:

rsync -av host:'file\ name\ with\ spaces' /dest

CONNECTING TO AN RSYNC DAEMON

It is also possible to use rsync without a remote shell as the transport. In this
case you will directly connect to a remote rsync daemon, typically using TCP
port 873. (This obviously requires the daemon to be running on the remote
system, so refer to the STARTING AN RSYNC DAEMON TO ACCEPT
CONNECTIONS section below for information on that.)

Using rsync in this way is the same as using it with a remote shell except that:

you either use a double colon :: instead of a single colon to separate the
hostname from the path, or you use an rsync:// URL.
the first word of the "path" is actually a module name.
the remote daemon may print a message of the day when you connect.
if you specify no path name on the remote daemon then the list of
accessible paths on the daemon will be shown.
if you specify no local destination then a listing of the specified files on the
remote daemon is provided.
you must not specify the --rsh (-e) option.

An example that copies all the files in a remote module named "src":

 rsync -av host::src /dest

rsync http://rsync.samba.org/ftp/rsync/rsync.html

4 de 67 28/04/14 13:58

Some modules on the remote daemon may require authentication. If so, you
will receive a password prompt when you connect. You can avoid the password
prompt by setting the environment variable RSYNC_PASSWORD to the
password you want to use or using the --password-file option. This may be
useful when scripting rsync.

WARNING: On some systems environment variables are visible to all users. On
those systems using --password-file is recommended.

You may establish the connection via a web proxy by setting the environment
variable RSYNC_PROXY to a hostname:port pair pointing to your web proxy.
Note that your web proxy's configuration must support proxy connections to
port 873.

You may also establish a daemon connection using a program as a proxy by
setting the environment variable RSYNC_CONNECT_PROG to the commands
you wish to run in place of making a direct socket connection. The string may
contain the escape "%H" to represent the hostname specified in the rsync
command (so use "%%" if you need a single "%" in your string). For example:

 export RSYNC_CONNECT_PROG='ssh proxyhost nc %H 873'
 rsync -av targethost1::module/src/ /dest/
 rsync -av rsync:://targethost2/module/src/ /dest/

The command specified above uses ssh to run nc (netcat) on a proxyhost,
which forwards all data to port 873 (the rsync daemon) on the targethost (%H).

USING RSYNC-DAEMON FEATURES VIA A
REMOTE-SHELL CONNECTION

It is sometimes useful to use various features of an rsync daemon (such as
named modules) without actually allowing any new socket connections into a
system (other than what is already required to allow remote-shell access).
Rsync supports connecting to a host using a remote shell and then spawning a
single-use "daemon" server that expects to read its config file in the home dir
of the remote user. This can be useful if you want to encrypt a daemon-style
transfer's data, but since the daemon is started up fresh by the remote user,
you may not be able to use features such as chroot or change the uid used by
the daemon. (For another way to encrypt a daemon transfer, consider using ssh
to tunnel a local port to a remote machine and configure a normal rsync
daemon on that remote host to only allow connections from "localhost".)

From the user's perspective, a daemon transfer via a remote-shell connection
uses nearly the same command-line syntax as a normal rsync-daemon transfer,
with the only exception being that you must explicitly set the remote shell
program on the command-line with the --rsh=COMMAND option. (Setting the
RSYNC_RSH in the environment will not turn on this functionality.) For
example:

 rsync -av --rsh=ssh host::module /dest

rsync http://rsync.samba.org/ftp/rsync/rsync.html

5 de 67 28/04/14 13:58

If you need to specify a different remote-shell user, keep in mind that the
user@ prefix in front of the host is specifying the rsync-user value (for a
module that requires user-based authentication). This means that you must
give the '-l user' option to ssh when specifying the remote-shell, as in this
example that uses the short version of the --rsh option:

 rsync -av -e "ssh -l ssh-user" rsync-user@host::module /dest

The "ssh-user" will be used at the ssh level; the "rsync-user" will be used to
log-in to the "module".

STARTING AN RSYNC DAEMON TO ACCEPT
CONNECTIONS

In order to connect to an rsync daemon, the remote system needs to have a
daemon already running (or it needs to have configured something like inetd to
spawn an rsync daemon for incoming connections on a particular port). For full
information on how to start a daemon that will handling incoming socket
connections, see the rsyncd.conf(5) man page -- that is the config file for the
daemon, and it contains the full details for how to run the daemon (including
stand-alone and inetd configurations).

If you're using one of the remote-shell transports for the transfer, there is no
need to manually start an rsync daemon.

SORTED TRANSFER ORDER

Rsync always sorts the specified filenames into its internal transfer list. This
handles the merging together of the contents of identically named directories,
makes it easy to remove duplicate filenames, and may confuse someone when
the files are transferred in a different order than what was given on the
command-line.

If you need a particular file to be transferred prior to another, either separate
the files into different rsync calls, or consider using --delay-updates (which
doesn't affect the sorted transfer order, but does make the final file-updating
phase happen much more rapidly).

EXAMPLES

Here are some examples of how I use rsync.

To backup my wife's home directory, which consists of large MS Word files and
mail folders, I use a cron job that runs

rsync -Cavz . arvidsjaur:backup

each night over a PPP connection to a duplicate directory on my machine
"arvidsjaur".

rsync http://rsync.samba.org/ftp/rsync/rsync.html

6 de 67 28/04/14 13:58

To synchronize my samba source trees I use the following Makefile targets:

 get:
 rsync -avuzb --exclude '*~' samba:samba/ .
 put:
 rsync -Cavuzb . samba:samba/
 sync: get put

this allows me to sync with a CVS directory at the other end of the connection.
I then do CVS operations on the remote machine, which saves a lot of time as
the remote CVS protocol isn't very efficient.

I mirror a directory between my "old" and "new" ftp sites with the command:

rsync -az -e ssh --delete ~ftp/pub/samba nimbus:"~ftp/pub/tridge"

This is launched from cron every few hours.

OPTIONS SUMMARY

Here is a short summary of the options available in rsync. Please refer to the
detailed description below for a complete description.

 -v, --verbose increase verbosity
 --info=FLAGS fine-grained informational verbosity
 --debug=FLAGS fine-grained debug verbosity
 --msgs2stderr special output handling for debugging
 -q, --quiet suppress non-error messages
 --no-motd suppress daemon-mode MOTD (see caveat)
 -c, --checksum skip based on checksum, not mod-time & size
 -a, --archive archive mode; equals -rlptgoD (no -H,-A,-X)
 --no-OPTION turn off an implied OPTION (e.g. --no-D)
 -r, --recursive recurse into directories
 -R, --relative use relative path names
 --no-implied-dirs don't send implied dirs with --relative
 -b, --backup make backups (see --suffix & --backup-dir)
 --backup-dir=DIR make backups into hierarchy based in DIR
 --suffix=SUFFIX backup suffix (default ~ w/o --backup-dir)
 -u, --update skip files that are newer on the receiver
 --inplace update destination files in-place
 --append append data onto shorter files
 --append-verify --append w/old data in file checksum
 -d, --dirs transfer directories without recursing
 -l, --links copy symlinks as symlinks
 -L, --copy-links transform symlink into referent file/dir
 --copy-unsafe-links only "unsafe" symlinks are transformed
 --safe-links ignore symlinks that point outside the tree
 --munge-links munge symlinks to make them safer
 -k, --copy-dirlinks transform symlink to dir into referent dir
 -K, --keep-dirlinks treat symlinked dir on receiver as dir
 -H, --hard-links preserve hard links
 -p, --perms preserve permissions
 -E, --executability preserve executability
 --chmod=CHMOD affect file and/or directory permissions
 -A, --acls preserve ACLs (implies -p)
 -X, --xattrs preserve extended attributes
 -o, --owner preserve owner (super-user only)

rsync http://rsync.samba.org/ftp/rsync/rsync.html

7 de 67 28/04/14 13:58

 -g, --group preserve group
 --devices preserve device files (super-user only)
 --specials preserve special files
 -D same as --devices --specials
 -t, --times preserve modification times
 -O, --omit-dir-times omit directories from --times
 -J, --omit-link-times omit symlinks from --times
 --super receiver attempts super-user activities
 --fake-super store/recover privileged attrs using xattrs
 -S, --sparse handle sparse files efficiently
 --preallocate allocate dest files before writing
 -n, --dry-run perform a trial run with no changes made
 -W, --whole-file copy files whole (w/o delta-xfer algorithm)
 -x, --one-file-system don't cross filesystem boundaries
 -B, --block-size=SIZE force a fixed checksum block-size
 -e, --rsh=COMMAND specify the remote shell to use
 --rsync-path=PROGRAM specify the rsync to run on remote machine
 --existing skip creating new files on receiver
 --ignore-existing skip updating files that exist on receiver
 --remove-source-files sender removes synchronized files (non-dir)
 --del an alias for --delete-during
 --delete delete extraneous files from dest dirs
 --delete-before receiver deletes before xfer, not during
 --delete-during receiver deletes during the transfer
 --delete-delay find deletions during, delete after
 --delete-after receiver deletes after transfer, not during
 --delete-excluded also delete excluded files from dest dirs
 --ignore-missing-args ignore missing source args without error
 --delete-missing-args delete missing source args from destination
 --ignore-errors delete even if there are I/O errors
 --force force deletion of dirs even if not empty
 --max-delete=NUM don't delete more than NUM files
 --max-size=SIZE don't transfer any file larger than SIZE
 --min-size=SIZE don't transfer any file smaller than SIZE
 --partial keep partially transferred files
 --partial-dir=DIR put a partially transferred file into DIR
 --delay-updates put all updated files into place at end
 -m, --prune-empty-dirs prune empty directory chains from file-list
 --numeric-ids don't map uid/gid values by user/group name
 --usermap=STRING custom username mapping
 --groupmap=STRING custom groupname mapping
 --chown=USER:GROUP simple username/groupname mapping
 --timeout=SECONDS set I/O timeout in seconds
 --contimeout=SECONDS set daemon connection timeout in seconds
 -I, --ignore-times don't skip files that match size and time
 --size-only skip files that match in size
 --modify-window=NUM compare mod-times with reduced accuracy
 -T, --temp-dir=DIR create temporary files in directory DIR
 -y, --fuzzy find similar file for basis if no dest file
 --compare-dest=DIR also compare received files relative to DIR
 --copy-dest=DIR ... and include copies of unchanged files
 --link-dest=DIR hardlink to files in DIR when unchanged
 -z, --compress compress file data during the transfer
 --compress-level=NUM explicitly set compression level
 --skip-compress=LIST skip compressing files with suffix in LIST
 -C, --cvs-exclude auto-ignore files in the same way CVS does
 -f, --filter=RULE add a file-filtering RULE
 -F same as --filter='dir-merge /.rsync-filter'
 repeated: --filter='- .rsync-filter'
 --exclude=PATTERN exclude files matching PATTERN
 --exclude-from=FILE read exclude patterns from FILE
 --include=PATTERN don't exclude files matching PATTERN

rsync http://rsync.samba.org/ftp/rsync/rsync.html

8 de 67 28/04/14 13:58

 --include-from=FILE read include patterns from FILE
 --files-from=FILE read list of source-file names from FILE
 -0, --from0 all *from/filter files are delimited by 0s
 -s, --protect-args no space-splitting; wildcard chars only
 --address=ADDRESS bind address for outgoing socket to daemon
 --port=PORT specify double-colon alternate port number
 --sockopts=OPTIONS specify custom TCP options
 --blocking-io use blocking I/O for the remote shell
 --outbuf=N|L|B set out buffering to None, Line, or Block
 --stats give some file-transfer stats
 -8, --8-bit-output leave high-bit chars unescaped in output
 -h, --human-readable output numbers in a human-readable format
 --progress show progress during transfer
 -P same as --partial --progress
 -i, --itemize-changes output a change-summary for all updates
 -M, --remote-option=OPTION send OPTION to the remote side only
 --out-format=FORMAT output updates using the specified FORMAT
 --log-file=FILE log what we're doing to the specified FILE
 --log-file-format=FMT log updates using the specified FMT
 --password-file=FILE read daemon-access password from FILE
 --list-only list the files instead of copying them
 --bwlimit=RATE limit socket I/O bandwidth
 --write-batch=FILE write a batched update to FILE
 --only-write-batch=FILE like --write-batch but w/o updating dest
 --read-batch=FILE read a batched update from FILE
 --protocol=NUM force an older protocol version to be used
 --iconv=CONVERT_SPEC request charset conversion of filenames
 --checksum-seed=NUM set block/file checksum seed (advanced)
 -4, --ipv4 prefer IPv4
 -6, --ipv6 prefer IPv6
 --version print version number
(-h) --help show this help (see below for -h comment)

Rsync can also be run as a daemon, in which case the following options are
accepted:

 --daemon run as an rsync daemon
 --address=ADDRESS bind to the specified address
 --bwlimit=RATE limit socket I/O bandwidth
 --config=FILE specify alternate rsyncd.conf file
 -M, --dparam=OVERRIDE override global daemon config parameter
 --no-detach do not detach from the parent
 --port=PORT listen on alternate port number
 --log-file=FILE override the "log file" setting
 --log-file-format=FMT override the "log format" setting
 --sockopts=OPTIONS specify custom TCP options
 -v, --verbose increase verbosity
 -4, --ipv4 prefer IPv4
 -6, --ipv6 prefer IPv6
 -h, --help show this help (if used after --daemon)

OPTIONS

Rsync accepts both long (double-dash + word) and short (single-dash + letter)
options. The full list of the available options are described below. If an option
can be specified in more than one way, the choices are comma-separated.
Some options only have a long variant, not a short. If the option takes a

rsync http://rsync.samba.org/ftp/rsync/rsync.html

9 de 67 28/04/14 13:58

parameter, the parameter is only listed after the long variant, even though it
must also be specified for the short. When specifying a parameter, you can
either use the form --option=param or replace the '=' with whitespace. The
parameter may need to be quoted in some manner for it to survive the shell's
command-line parsing. Keep in mind that a leading tilde (~) in a filename is
substituted by your shell, so --option=~/foo will not change the tilde into your
home directory (remove the '=' for that).

--help
Print a short help page describing the options available in rsync and exit.
For backward-compatibility with older versions of rsync, the help will also
be output if you use the -h option without any other args.

--version
print the rsync version number and exit.

-v, --verbose
This option increases the amount of information you are given during the
transfer. By default, rsync works silently. A single -v will give you
information about what files are being transferred and a brief summary at
the end. Two -v options will give you information on what files are being
skipped and slightly more information at the end. More than two -v
options should only be used if you are debugging rsync.

In a modern rsync, the -v option is equivalent to the setting of groups of
--info and --debug options. You can choose to use these newer options in
addition to, or in place of using --verbose, as any fine-grained settings
override the implied settings of -v. Both --info and --debug have a way to
ask for help that tells you exactly what flags are set for each increase in
verbosity.

--info=FLAGS
This option lets you have fine-grained control over the information output
you want to see. An individual flag name may be followed by a level
number, with 0 meaning to silence that output, 1 being the default output
level, and higher numbers increasing the output of that flag (for those that
support higher levels). Use --info=help to see all the available flag
names, what they output, and what flag names are added for each
increase in the verbose level. Some examples:

 rsync -a --info=progress2 src/ dest/
 rsync -avv --info=stats2,misc1,flist0 src/ dest/

Note that --info=name's output is affected by the --out-format and
--itemize-changes (-i) options. See those options for more information on
what is output and when.

This option was added to 3.1.0, so an older rsync on the server side might
reject your attempts at fine-grained control (if one or more flags needed to
be send to the server and the server was too old to understand them).

rsync http://rsync.samba.org/ftp/rsync/rsync.html

10 de 67 28/04/14 13:58

--debug=FLAGS
This option lets you have fine-grained control over the debug output you
want to see. An individual flag name may be followed by a level number,
with 0 meaning to silence that output, 1 being the default output level,
and higher numbers increasing the output of that flag (for those that
support higher levels). Use --debug=help to see all the available flag
names, what they output, and what flag names are added for each
increase in the verbose level. Some examples:

 rsync -avvv --debug=none src/ dest/
 rsync -avA --del --debug=del2,acl src/ dest/

Note that some debug messages will only be output when --msgs2stderr
is specified, especially those pertaining to I/O and buffer debugging.

This option was added to 3.1.0, so an older rsync on the server side might
reject your attempts at fine-grained control (if one or more flags needed to
be send to the server and the server was too old to understand them).

--msgs2stderr
This option changes rsync to send all its output directly to stderr rather
than to send messages to the client side via the protocol (which normally
outputs info messages via stdout). This is mainly intended for debugging
in order to avoid changing the data sent via the protocol, since the extra
protocol data can change what is being tested. Keep in mind that a
daemon connection does not have a stderr channel to send messages back
to the client side, so if you are doing any daemon-transfer debugging
using this option, you should start up a daemon using --no-detach so that
you can see the stderr output on the daemon side.

This option has the side-effect of making stderr output get line-buffered so
that the merging of the output of 3 programs happens in a more readable
manner.

-q, --quiet
This option decreases the amount of information you are given during the
transfer, notably suppressing information messages from the remote
server. This option is useful when invoking rsync from cron.

--no-motd
This option affects the information that is output by the client at the start
of a daemon transfer. This suppresses the message-of-the-day (MOTD)
text, but it also affects the list of modules that the daemon sends in
response to the "rsync host::" request (due to a limitation in the rsync
protocol), so omit this option if you want to request the list of modules
from the daemon.

-I, --ignore-times
Normally rsync will skip any files that are already the same size and have
the same modification timestamp. This option turns off this "quick check"
behavior, causing all files to be updated.

rsync http://rsync.samba.org/ftp/rsync/rsync.html

11 de 67 28/04/14 13:58

--size-only
This modifies rsync's "quick check" algorithm for finding files that need to
be transferred, changing it from the default of transferring files with
either a changed size or a changed last-modified time to just looking for
files that have changed in size. This is useful when starting to use rsync
after using another mirroring system which may not preserve timestamps
exactly.

--modify-window
When comparing two timestamps, rsync treats the timestamps as being
equal if they differ by no more than the modify-window value. This is
normally 0 (for an exact match), but you may find it useful to set this to a
larger value in some situations. In particular, when transferring to or from
an MS Windows FAT filesystem (which represents times with a 2-second
resolution), --modify-window=1 is useful (allowing times to differ by up
to 1 second).

-c, --checksum
This changes the way rsync checks if the files have been changed and are
in need of a transfer. Without this option, rsync uses a "quick check" that
(by default) checks if each file's size and time of last modification match
between the sender and receiver. This option changes this to compare a
128-bit checksum for each file that has a matching size. Generating the
checksums means that both sides will expend a lot of disk I/O reading all
the data in the files in the transfer (and this is prior to any reading that
will be done to transfer changed files), so this can slow things down
significantly.

The sending side generates its checksums while it is doing the file-system
scan that builds the list of the available files. The receiver generates its
checksums when it is scanning for changed files, and will checksum any
file that has the same size as the corresponding sender's file: files with
either a changed size or a changed checksum are selected for transfer.

Note that rsync always verifies that each transferred file was correctly
reconstructed on the receiving side by checking a whole-file checksum
that is generated as the file is transferred, but that automatic after-
the-transfer verification has nothing to do with this option's before-
the-transfer "Does this file need to be updated?" check.

For protocol 30 and beyond (first supported in 3.0.0), the checksum used
is MD5. For older protocols, the checksum used is MD4.

-a, --archive
This is equivalent to -rlptgoD. It is a quick way of saying you want
recursion and want to preserve almost everything (with -H being a notable
omission). The only exception to the above equivalence is when
--files-from is specified, in which case -r is not implied.

Note that -a does not preserve hardlinks, because finding multiply-
linked files is expensive. You must separately specify -H.

rsync http://rsync.samba.org/ftp/rsync/rsync.html

12 de 67 28/04/14 13:58

--no-OPTION
You may turn off one or more implied options by prefixing the option name
with "no-". Not all options may be prefixed with a "no-": only options that
are implied by other options (e.g. --no-D, --no-perms) or have different
defaults in various circumstances (e.g. --no-whole-file, --no-blocking-io,
--no-dirs). You may specify either the short or the long option name after
the "no-" prefix (e.g. --no-R is the same as --no-relative).

For example: if you want to use -a (--archive) but don't want -o
(--owner), instead of converting -a into -rlptgD, you could specify -a
--no-o (or -a --no-owner).

The order of the options is important: if you specify --no-r -a, the -r
option would end up being turned on, the opposite of -a --no-r. Note also
that the side-effects of the --files-from option are NOT positional, as it
affects the default state of several options and slightly changes the
meaning of -a (see the --files-from option for more details).

-r, --recursive
This tells rsync to copy directories recursively. See also --dirs (-d).

Beginning with rsync 3.0.0, the recursive algorithm used is now an
incremental scan that uses much less memory than before and begins the
transfer after the scanning of the first few directories have been
completed. This incremental scan only affects our recursion algorithm,
and does not change a non-recursive transfer. It is also only possible when
both ends of the transfer are at least version 3.0.0.

Some options require rsync to know the full file list, so these options
disable the incremental recursion mode. These include: --delete-before,
--delete-after, --prune-empty-dirs, and --delay-updates. Because of
this, the default delete mode when you specify --delete is now --delete-
during when both ends of the connection are at least 3.0.0 (use --del or
--delete-during to request this improved deletion mode explicitly). See
also the --delete-delay option that is a better choice than using --delete-
after.

Incremental recursion can be disabled using the --no-inc-recursive
option or its shorter --no-i-r alias.

-R, --relative
Use relative paths. This means that the full path names specified on the
command line are sent to the server rather than just the last parts of the
filenames. This is particularly useful when you want to send several
different directories at the same time. For example, if you used this
command:

rsync -av /foo/bar/baz.c remote:/tmp/

... this would create a file named baz.c in /tmp/ on the remote machine. If
instead you used

rsync http://rsync.samba.org/ftp/rsync/rsync.html

13 de 67 28/04/14 13:58

rsync -avR /foo/bar/baz.c remote:/tmp/

then a file named /tmp/foo/bar/baz.c would be created on the remote
machine, preserving its full path. These extra path elements are called
"implied directories" (i.e. the "foo" and the "foo/bar" directories in the
above example).

Beginning with rsync 3.0.0, rsync always sends these implied directories
as real directories in the file list, even if a path element is really a symlink
on the sending side. This prevents some really unexpected behaviors
when copying the full path of a file that you didn't realize had a symlink in
its path. If you want to duplicate a server-side symlink, include both the
symlink via its path, and referent directory via its real path. If you're
dealing with an older rsync on the sending side, you may need to use the
--no-implied-dirs option.

It is also possible to limit the amount of path information that is sent as
implied directories for each path you specify. With a modern rsync on the
sending side (beginning with 2.6.7), you can insert a dot and a slash into
the source path, like this:

rsync -avR /foo/./bar/baz.c remote:/tmp/

That would create /tmp/bar/baz.c on the remote machine. (Note that the
dot must be followed by a slash, so "/foo/." would not be abbreviated.) For
older rsync versions, you would need to use a chdir to limit the source
path. For example, when pushing files:

(cd /foo; rsync -avR bar/baz.c remote:/tmp/)

(Note that the parens put the two commands into a sub-shell, so that the
"cd" command doesn't remain in effect for future commands.) If you're
pulling files from an older rsync, use this idiom (but only for a
non-daemon transfer):

rsync -avR --rsync-path="cd /foo; rsync" \
remote:bar/baz.c /tmp/

--no-implied-dirs
This option affects the default behavior of the --relative option. When it is
specified, the attributes of the implied directories from the source names
are not included in the transfer. This means that the corresponding path
elements on the destination system are left unchanged if they exist, and
any missing implied directories are created with default attributes. This
even allows these implied path elements to have big differences, such as
being a symlink to a directory on the receiving side.

For instance, if a command-line arg or a files-from entry told rsync to
transfer the file "path/foo/file", the directories "path" and "path/foo" are
implied when --relative is used. If "path/foo" is a symlink to "bar" on the
destination system, the receiving rsync would ordinarily delete "path/foo",
recreate it as a directory, and receive the file into the new directory. With

rsync http://rsync.samba.org/ftp/rsync/rsync.html

14 de 67 28/04/14 13:58

--no-implied-dirs, the receiving rsync updates "path/foo/file" using the
existing path elements, which means that the file ends up being created in
"path/bar". Another way to accomplish this link preservation is to use the
--keep-dirlinks option (which will also affect symlinks to directories in
the rest of the transfer).

When pulling files from an rsync older than 3.0.0, you may need to use
this option if the sending side has a symlink in the path you request and
you wish the implied directories to be transferred as normal directories.

-b, --backup
With this option, preexisting destination files are renamed as each file is
transferred or deleted. You can control where the backup file goes and
what (if any) suffix gets appended using the --backup-dir and --suffix
options.

Note that if you don't specify --backup-dir, (1) the --omit-dir-times
option will be implied, and (2) if --delete is also in effect (without
--delete-excluded), rsync will add a "protect" filter-rule for the backup
suffix to the end of all your existing excludes (e.g. -f "P *~"). This will
prevent previously backed-up files from being deleted. Note that if you are
supplying your own filter rules, you may need to manually insert your own
exclude/protect rule somewhere higher up in the list so that it has a high
enough priority to be effective (e.g., if your rules specify a trailing
inclusion/exclusion of '*', the auto-added rule would never be reached).

--backup-dir=DIR
In combination with the --backup option, this tells rsync to store all
backups in the specified directory on the receiving side. This can be used
for incremental backups. You can additionally specify a backup suffix
using the --suffix option (otherwise the files backed up in the specified
directory will keep their original filenames).

Note that if you specify a relative path, the backup directory will be
relative to the destination directory, so you probably want to specify either
an absolute path or a path that starts with "../". If an rsync daemon is the
receiver, the backup dir cannot go outside the module's path hierarchy, so
take extra care not to delete it or copy into it.

--suffix=SUFFIX
This option allows you to override the default backup suffix used with the
--backup (-b) option. The default suffix is a ~ if no --backup-dir was
specified, otherwise it is an empty string.

-u, --update
This forces rsync to skip any files which exist on the destination and have
a modified time that is newer than the source file. (If an existing
destination file has a modification time equal to the source file's, it will be
updated if the sizes are different.)

Note that this does not affect the copying of symlinks or other special

rsync http://rsync.samba.org/ftp/rsync/rsync.html

15 de 67 28/04/14 13:58

files. Also, a difference of file format between the sender and receiver is
always considered to be important enough for an update, no matter what
date is on the objects. In other words, if the source has a directory where
the destination has a file, the transfer would occur regardless of the
timestamps.

This option is a transfer rule, not an exclude, so it doesn't affect the data
that goes into the file-lists, and thus it doesn't affect deletions. It just
limits the files that the receiver requests to be transferred.

--inplace
This option changes how rsync transfers a file when its data needs to be
updated: instead of the default method of creating a new copy of the file
and moving it into place when it is complete, rsync instead writes the
updated data directly to the destination file.

This has several effects:

Hard links are not broken. This means the new data will be
visible through other hard links to the destination file.
Moreover, attempts to copy differing source files onto a
multiply-linked destination file will result in a "tug of war"
with the destination data changing back and forth.
In-use binaries cannot be updated (either the OS will
prevent this from happening, or binaries that attempt to
swap-in their data will misbehave or crash).
The file's data will be in an inconsistent state during the
transfer and will be left that way if the transfer is
interrupted or if an update fails.
A file that rsync cannot write to cannot be updated. While a
super user can update any file, a normal user needs to be
granted write permission for the open of the file for writing
to be successful.
The efficiency of rsync's delta-transfer algorithm may be
reduced if some data in the destination file is overwritten
before it can be copied to a position later in the file. This
does not apply if you use --backup, since rsync is smart
enough to use the backup file as the basis file for the
transfer.

WARNING: you should not use this option to update files that are being
accessed by others, so be careful when choosing to use this for a copy.

This option is useful for transferring large files with block-based changes
or appended data, and also on systems that are disk bound, not network
bound. It can also help keep a copy-on-write filesystem snapshot from
diverging the entire contents of a file that only has minor changes.

The option implies --partial (since an interrupted transfer does not delete
the file), but conflicts with --partial-dir and --delay-updates. Prior to
rsync 2.6.4 --inplace was also incompatible with --compare-dest and

rsync http://rsync.samba.org/ftp/rsync/rsync.html

16 de 67 28/04/14 13:58

--link-dest.

--append
This causes rsync to update a file by appending data onto the end of the
file, which presumes that the data that already exists on the receiving side
is identical with the start of the file on the sending side. If a file needs to
be transferred and its size on the receiver is the same or longer than the
size on the sender, the file is skipped. This does not interfere with the
updating of a file's non-content attributes (e.g. permissions, ownership,
etc.) when the file does not need to be transferred, nor does it affect the
updating of any non-regular files. Implies --inplace, but does not conflict
with --sparse (since it is always extending a file's length).

--append-verify
This works just like the --append option, but the existing data on the
receiving side is included in the full-file checksum verification step, which
will cause a file to be resent if the final verification step fails (rsync uses a
normal, non-appending --inplace transfer for the resend).

Note: prior to rsync 3.0.0, the --append option worked like --append-
verify, so if you are interacting with an older rsync (or the transfer is
using a protocol prior to 30), specifying either append option will initiate
an --append-verify transfer.

-d, --dirs
Tell the sending side to include any directories that are encountered.
Unlike --recursive, a directory's contents are not copied unless the
directory name specified is "." or ends with a trailing slash (e.g. ".", "dir/.",
"dir/", etc.). Without this option or the --recursive option, rsync will skip
all directories it encounters (and output a message to that effect for each
one). If you specify both --dirs and --recursive, --recursive takes
precedence.

The --dirs option is implied by the --files-from option or the --list-only
option (including an implied --list-only usage) if --recursive wasn't
specified (so that directories are seen in the listing). Specify --no-dirs (or
--no-d) if you want to turn this off.

There is also a backward-compatibility helper option, --old-dirs (or
--old-d) that tells rsync to use a hack of "-r --exclude='/*/*'" to get an
older rsync to list a single directory without recursing.

-l, --links
When symlinks are encountered, recreate the symlink on the destination.

-L, --copy-links
When symlinks are encountered, the item that they point to (the referent)
is copied, rather than the symlink. In older versions of rsync, this option
also had the side-effect of telling the receiving side to follow symlinks,
such as symlinks to directories. In a modern rsync such as this one, you'll
need to specify --keep-dirlinks (-K) to get this extra behavior. The only

rsync http://rsync.samba.org/ftp/rsync/rsync.html

17 de 67 28/04/14 13:58

exception is when sending files to an rsync that is too old to understand
-K -- in that case, the -L option will still have the side-effect of -K on that
older receiving rsync.

--copy-unsafe-links
This tells rsync to copy the referent of symbolic links that point outside
the copied tree. Absolute symlinks are also treated like ordinary files, and
so are any symlinks in the source path itself when --relative is used. This
option has no additional effect if --copy-links was also specified.

--safe-links
This tells rsync to ignore any symbolic links which point outside the
copied tree. All absolute symlinks are also ignored. Using this option in
conjunction with --relative may give unexpected results.

--munge-links
This option tells rsync to (1) modify all symlinks on the receiving side in a
way that makes them unusable but recoverable (see below), or (2) to
unmunge symlinks on the sending side that had been stored in a munged
state. This is useful if you don't quite trust the source of the data to not try
to slip in a symlink to a unexpected place.

The way rsync disables the use of symlinks is to prefix each one with the
string "/rsyncd-munged/". This prevents the links from being used as long
as that directory does not exist. When this option is enabled, rsync will
refuse to run if that path is a directory or a symlink to a directory.

The option only affects the client side of the transfer, so if you need it to
affect the server, specify it via --remote-option. (Note that in a local
transfer, the client side is the sender.)

This option has no affect on a daemon, since the daemon configures
whether it wants munged symlinks via its "munge symlinks" parameter.
See also the "munge-symlinks" perl script in the support directory of the
source code.

-k, --copy-dirlinks
This option causes the sending side to treat a symlink to a directory as
though it were a real directory. This is useful if you don't want symlinks to
non-directories to be affected, as they would be using --copy-links.

Without this option, if the sending side has replaced a directory with a
symlink to a directory, the receiving side will delete anything that is in the
way of the new symlink, including a directory hierarchy (as long as
--force or --delete is in effect).

See also --keep-dirlinks for an analogous option for the receiving side.

--copy-dirlinks applies to all symlinks to directories in the source. If you
want to follow only a few specified symlinks, a trick you can use is to pass
them as additional source args with a trailing slash, using --relative to

rsync http://rsync.samba.org/ftp/rsync/rsync.html

18 de 67 28/04/14 13:58

make the paths match up right. For example:

rsync -r --relative src/./ src/./follow-me/ dest/

This works because rsync calls lstat(2) on the source arg as given, and
the trailing slash makes lstat(2) follow the symlink, giving rise to a
directory in the file-list which overrides the symlink found during the scan
of "src/./".

-K, --keep-dirlinks
This option causes the receiving side to treat a symlink to a directory as
though it were a real directory, but only if it matches a real directory from
the sender. Without this option, the receiver's symlink would be deleted
and replaced with a real directory.

For example, suppose you transfer a directory "foo" that contains a file
"file", but "foo" is a symlink to directory "bar" on the receiver. Without
--keep-dirlinks, the receiver deletes symlink "foo", recreates it as a
directory, and receives the file into the new directory. With --keep-
dirlinks, the receiver keeps the symlink and "file" ends up in "bar".

One note of caution: if you use --keep-dirlinks, you must trust all the
symlinks in the copy! If it is possible for an untrusted user to create their
own symlink to any directory, the user could then (on a subsequent copy)
replace the symlink with a real directory and affect the content of
whatever directory the symlink references. For backup copies, you are
better off using something like a bind mount instead of a symlink to
modify your receiving hierarchy.

See also --copy-dirlinks for an analogous option for the sending side.

-H, --hard-links
This tells rsync to look for hard-linked files in the source and link together
the corresponding files on the destination. Without this option,
hard-linked files in the source are treated as though they were separate
files.

This option does NOT necessarily ensure that the pattern of hard links on
the destination exactly matches that on the source. Cases in which the
destination may end up with extra hard links include the following:

If the destination contains extraneous hard-links (more
linking than what is present in the source file list), the
copying algorithm will not break them explicitly. However,
if one or more of the paths have content differences, the
normal file-update process will break those extra links
(unless you are using the --inplace option).
If you specify a --link-dest directory that contains hard
links, the linking of the destination files against the
--link-dest files can cause some paths in the destination to
become linked together due to the --link-dest associations.

rsync http://rsync.samba.org/ftp/rsync/rsync.html

19 de 67 28/04/14 13:58

Note that rsync can only detect hard links between files that are inside
the transfer set. If rsync updates a file that has extra hard-link
connections to files outside the transfer, that linkage will be broken. If you
are tempted to use the --inplace option to avoid this breakage, be very
careful that you know how your files are being updated so that you are
certain that no unintended changes happen due to lingering hard links
(and see the --inplace option for more caveats).

If incremental recursion is active (see --recursive), rsync may transfer a
missing hard-linked file before it finds that another link for that contents
exists elsewhere in the hierarchy. This does not affect the accuracy of the
transfer (i.e. which files are hard-linked together), just its efficiency (i.e.
copying the data for a new, early copy of a hard-linked file that could have
been found later in the transfer in another member of the hard-linked set
of files). One way to avoid this inefficiency is to disable incremental
recursion using the --no-inc-recursive option.

-p, --perms
This option causes the receiving rsync to set the destination permissions
to be the same as the source permissions. (See also the --chmod option
for a way to modify what rsync considers to be the source permissions.)

When this option is off, permissions are set as follows:

Existing files (including updated files) retain their existing
permissions, though the --executability option might
change just the execute permission for the file.
New files get their "normal" permission bits set to the
source file's permissions masked with the receiving
directory's default permissions (either the receiving
process's umask, or the permissions specified via the
destination directory's default ACL), and their special
permission bits disabled except in the case where a new
directory inherits a setgid bit from its parent directory.

Thus, when --perms and --executability are both disabled, rsync's
behavior is the same as that of other file-copy utilities, such as cp(1) and
tar(1).

In summary: to give destination files (both old and new) the source
permissions, use --perms. To give new files the destination-default
permissions (while leaving existing files unchanged), make sure that the
--perms option is off and use --chmod=ugo=rwX (which ensures that all
non-masked bits get enabled). If you'd care to make this latter behavior
easier to type, you could define a popt alias for it, such as putting this line
in the file ~/.popt (the following defines the -Z option, and includes --no-g
to use the default group of the destination dir):

rsync alias -Z --no-p --no-g --chmod=ugo=rwX

You could then use this new option in a command such as this one:

rsync http://rsync.samba.org/ftp/rsync/rsync.html

20 de 67 28/04/14 13:58

rsync -avZ src/ dest/

(Caveat: make sure that -a does not follow -Z, or it will re-enable the two
"--no-*" options mentioned above.)

The preservation of the destination's setgid bit on newly-created
directories when --perms is off was added in rsync 2.6.7. Older rsync
versions erroneously preserved the three special permission bits for
newly-created files when --perms was off, while overriding the
destination's setgid bit setting on a newly-created directory. Default ACL
observance was added to the ACL patch for rsync 2.6.7, so older (or
non-ACL-enabled) rsyncs use the umask even if default ACLs are present.
(Keep in mind that it is the version of the receiving rsync that affects
these behaviors.)

-E, --executability
This option causes rsync to preserve the executability (or
non-executability) of regular files when --perms is not enabled. A regular
file is considered to be executable if at least one 'x' is turned on in its
permissions. When an existing destination file's executability differs from
that of the corresponding source file, rsync modifies the destination file's
permissions as follows:

To make a file non-executable, rsync turns off all its 'x'
permissions.
To make a file executable, rsync turns on each 'x'
permission that has a corresponding 'r' permission enabled.

If --perms is enabled, this option is ignored.

-A, --acls
This option causes rsync to update the destination ACLs to be the same as
the source ACLs. The option also implies --perms.

The source and destination systems must have compatible ACL entries for
this option to work properly. See the --fake-super option for a way to
backup and restore ACLs that are not compatible.

-X, --xattrs
This option causes rsync to update the destination extended attributes to
be the same as the source ones.

For systems that support extended-attribute namespaces, a copy being
done by a super-user copies all namespaces except system.*. A normal
user only copies the user.* namespace. To be able to backup and restore
non-user namespaces as a normal user, see the --fake-super option.

Note that this option does not copy rsyncs special xattr values (e.g. those
used by --fake-super) unless you repeat the option (e.g. -XX). This "copy
all xattrs" mode cannot be used with --fake-super.

--chmod

rsync http://rsync.samba.org/ftp/rsync/rsync.html

21 de 67 28/04/14 13:58

This option tells rsync to apply one or more comma-separated "chmod"
modes to the permission of the files in the transfer. The resulting value is
treated as though it were the permissions that the sending side supplied
for the file, which means that this option can seem to have no effect on
existing files if --perms is not enabled.

In addition to the normal parsing rules specified in the chmod(1)
manpage, you can specify an item that should only apply to a directory by
prefixing it with a 'D', or specify an item that should only apply to a file by
prefixing it with a 'F'. For example, the following will ensure that all
directories get marked set-gid, that no files are other-writable, that both
are user-writable and group-writable, and that both have consistent
executability across all bits:

--chmod=Dg+s,ug+w,Fo-w,+X

Using octal mode numbers is also allowed:

--chmod=D2775,F664

It is also legal to specify multiple --chmod options, as each additional
option is just appended to the list of changes to make.

See the --perms and --executability options for how the resulting
permission value can be applied to the files in the transfer.

-o, --owner
This option causes rsync to set the owner of the destination file to be the
same as the source file, but only if the receiving rsync is being run as the
super-user (see also the --super and --fake-super options). Without this
option, the owner of new and/or transferred files are set to the invoking
user on the receiving side.

The preservation of ownership will associate matching names by default,
but may fall back to using the ID number in some circumstances (see also
the --numeric-ids option for a full discussion).

-g, --group
This option causes rsync to set the group of the destination file to be the
same as the source file. If the receiving program is not running as the
super-user (or if --no-super was specified), only groups that the invoking
user on the receiving side is a member of will be preserved. Without this
option, the group is set to the default group of the invoking user on the
receiving side.

The preservation of group information will associate matching names by
default, but may fall back to using the ID number in some circumstances
(see also the --numeric-ids option for a full discussion).

--devices
This option causes rsync to transfer character and block device files to the

rsync http://rsync.samba.org/ftp/rsync/rsync.html

22 de 67 28/04/14 13:58

remote system to recreate these devices. This option has no effect if the
receiving rsync is not run as the super-user (see also the --super and
--fake-super options).

--specials
This option causes rsync to transfer special files such as named sockets
and fifos.

-D
The -D option is equivalent to --devices --specials.

-t, --times
This tells rsync to transfer modification times along with the files and
update them on the remote system. Note that if this option is not used, the
optimization that excludes files that have not been modified cannot be
effective; in other words, a missing -t or -a will cause the next transfer to
behave as if it used -I, causing all files to be updated (though rsync's
delta-transfer algorithm will make the update fairly efficient if the files
haven't actually changed, you're much better off using -t).

-O, --omit-dir-times
This tells rsync to omit directories when it is preserving modification
times (see --times). If NFS is sharing the directories on the receiving
side, it is a good idea to use -O. This option is inferred if you use
--backup without --backup-dir.

-J, --omit-link-times
This tells rsync to omit symlinks when it is preserving modification times
(see --times).

--super
This tells the receiving side to attempt super-user activities even if the
receiving rsync wasn't run by the super-user. These activities include:
preserving users via the --owner option, preserving all groups (not just
the current user's groups) via the --groups option, and copying devices
via the --devices option. This is useful for systems that allow such
activities without being the super-user, and also for ensuring that you will
get errors if the receiving side isn't being run as the super-user. To turn
off super-user activities, the super-user can use --no-super.

--fake-super
When this option is enabled, rsync simulates super-user activities by
saving/restoring the privileged attributes via special extended attributes
that are attached to each file (as needed). This includes the file's owner
and group (if it is not the default), the file's device info (device & special
files are created as empty text files), and any permission bits that we
won't allow to be set on the real file (e.g. the real file gets u-s,g-s,o-t for
safety) or that would limit the owner's access (since the real super-user
can always access/change a file, the files we create can always be
accessed/changed by the creating user). This option also handles ACLs (if
--acls was specified) and non-user extended attributes (if --xattrs was

rsync http://rsync.samba.org/ftp/rsync/rsync.html

23 de 67 28/04/14 13:58

specified).

This is a good way to backup data without using a super-user, and to store
ACLs from incompatible systems.

The --fake-super option only affects the side where the option is used. To
affect the remote side of a remote-shell connection, use the --remote-
option (-M) option:

rsync -av -M--fake-super /src/ host:/dest/

For a local copy, this option affects both the source and the destination. If
you wish a local copy to enable this option just for the destination files,
specify -M--fake-super. If you wish a local copy to enable this option just
for the source files, combine --fake-super with -M--super.

This option is overridden by both --super and --no-super.

See also the "fake super" setting in the daemon's rsyncd.conf file.

-S, --sparse
Try to handle sparse files efficiently so they take up less space on the
destination. Conflicts with --inplace because it's not possible to overwrite
data in a sparse fashion.

--preallocate
This tells the receiver to allocate each destination file to its eventual size
before writing data to the file. Rsync will only use the real filesystem-level
preallocation support provided by Linux's fallocate(2) system call or
Cygwin's posix_fallocate(3), not the slow glibc implementation that
writes a zero byte into each block.

Without this option, larger files may not be entirely contiguous on the
filesystem, but with this option rsync will probably copy more slowly. If
the destination is not an extent-supporting filesystem (such as ext4, xfs,
NTFS, etc.), this option may have no positive effect at all.

-n, --dry-run
This makes rsync perform a trial run that doesn't make any changes (and
produces mostly the same output as a real run). It is most commonly used
in combination with the -v, --verbose and/or -i, --itemize-changes
options to see what an rsync command is going to do before one actually
runs it.

The output of --itemize-changes is supposed to be exactly the same on a
dry run and a subsequent real run (barring intentional trickery and
system call failures); if it isn't, that's a bug. Other output should be mostly
unchanged, but may differ in some areas. Notably, a dry run does not send
the actual data for file transfers, so --progress has no effect, the "bytes
sent", "bytes received", "literal data", and "matched data" statistics are
too small, and the "speedup" value is equivalent to a run where no file
transfers were needed.

rsync http://rsync.samba.org/ftp/rsync/rsync.html

24 de 67 28/04/14 13:58

-W, --whole-file
With this option rsync's delta-transfer algorithm is not used and the whole
file is sent as-is instead. The transfer may be faster if this option is used
when the bandwidth between the source and destination machines is
higher than the bandwidth to disk (especially when the "disk" is actually a
networked filesystem). This is the default when both the source and
destination are specified as local paths, but only if no batch-writing option
is in effect.

-x, --one-file-system
This tells rsync to avoid crossing a filesystem boundary when recursing.
This does not limit the user's ability to specify items to copy from multiple
filesystems, just rsync's recursion through the hierarchy of each directory
that the user specified, and also the analogous recursion on the receiving
side during deletion. Also keep in mind that rsync treats a "bind" mount to
the same device as being on the same filesystem.

If this option is repeated, rsync omits all mount-point directories from the
copy. Otherwise, it includes an empty directory at each mount-point it
encounters (using the attributes of the mounted directory because those
of the underlying mount-point directory are inaccessible).

If rsync has been told to collapse symlinks (via --copy-links or --copy-
unsafe-links), a symlink to a directory on another device is treated like a
mount-point. Symlinks to non-directories are unaffected by this option.

--existing, --ignore-non-existing
This tells rsync to skip creating files (including directories) that do not
exist yet on the destination. If this option is combined with the --ignore-
existing option, no files will be updated (which can be useful if all you
want to do is delete extraneous files).

This option is a transfer rule, not an exclude, so it doesn't affect the data
that goes into the file-lists, and thus it doesn't affect deletions. It just
limits the files that the receiver requests to be transferred.

--ignore-existing
This tells rsync to skip updating files that already exist on the destination
(this does not ignore existing directories, or nothing would get done). See
also --existing.

This option is a transfer rule, not an exclude, so it doesn't affect the data
that goes into the file-lists, and thus it doesn't affect deletions. It just
limits the files that the receiver requests to be transferred.

This option can be useful for those doing backups using the --link-dest
option when they need to continue a backup run that got interrupted.
Since a --link-dest run is copied into a new directory hierarchy (when it
is used properly), using --ignore existing will ensure that the already-
handled files don't get tweaked (which avoids a change in permissions on
the hard-linked files). This does mean that this option is only looking at

rsync http://rsync.samba.org/ftp/rsync/rsync.html

25 de 67 28/04/14 13:58

the existing files in the destination hierarchy itself.

--remove-source-files
This tells rsync to remove from the sending side the files (meaning
non-directories) that are a part of the transfer and have been successfully
duplicated on the receiving side.

Note that you should only use this option on source files that are
quiescent. If you are using this to move files that show up in a particular
directory over to another host, make sure that the finished files get
renamed into the source directory, not directly written into it, so that
rsync can't possibly transfer a file that is not yet fully written. If you can't
first write the files into a different directory, you should use a naming
idiom that lets rsync avoid transferring files that are not yet finished (e.g.
name the file "foo.new" when it is written, rename it to "foo" when it is
done, and then use the option --exclude='*.new' for the rsync transfer).

Starting with 3.1.0, rsync will skip the sender-side removal (and output an
error) if the file's size or modify time has not stayed unchanged.

--delete
This tells rsync to delete extraneous files from the receiving side (ones
that aren't on the sending side), but only for the directories that are being
synchronized. You must have asked rsync to send the whole directory (e.g.
"dir" or "dir/") without using a wildcard for the directory's contents (e.g.
"dir/*") since the wildcard is expanded by the shell and rsync thus gets a
request to transfer individual files, not the files' parent directory. Files
that are excluded from the transfer are also excluded from being deleted
unless you use the --delete-excluded option or mark the rules as only
matching on the sending side (see the include/exclude modifiers in the
FILTER RULES section).

Prior to rsync 2.6.7, this option would have no effect unless --recursive
was enabled. Beginning with 2.6.7, deletions will also occur when --dirs
(-d) is enabled, but only for directories whose contents are being copied.

This option can be dangerous if used incorrectly! It is a very good idea to
first try a run using the --dry-run option (-n) to see what files are going to
be deleted.

If the sending side detects any I/O errors, then the deletion of any files at
the destination will be automatically disabled. This is to prevent
temporary filesystem failures (such as NFS errors) on the sending side
from causing a massive deletion of files on the destination. You can
override this with the --ignore-errors option.

The --delete option may be combined with one of the --delete-WHEN
options without conflict, as well as --delete-excluded. However, if none
of the --delete-WHEN options are specified, rsync will choose the --delete-
during algorithm when talking to rsync 3.0.0 or newer, and the --delete-
before algorithm when talking to an older rsync. See also --delete-delay

rsync http://rsync.samba.org/ftp/rsync/rsync.html

26 de 67 28/04/14 13:58

and --delete-after.

--delete-before
Request that the file-deletions on the receiving side be done before the
transfer starts. See --delete (which is implied) for more details on
file-deletion.

Deleting before the transfer is helpful if the filesystem is tight for space
and removing extraneous files would help to make the transfer possible.
However, it does introduce a delay before the start of the transfer, and
this delay might cause the transfer to timeout (if --timeout was
specified). It also forces rsync to use the old, non-incremental recursion
algorithm that requires rsync to scan all the files in the transfer into
memory at once (see --recursive).

--delete-during, --del
Request that the file-deletions on the receiving side be done incrementally
as the transfer happens. The per-directory delete scan is done right before
each directory is checked for updates, so it behaves like a more efficient
--delete-before, including doing the deletions prior to any per-directory
filter files being updated. This option was first added in rsync version
2.6.4. See --delete (which is implied) for more details on file-deletion.

--delete-delay
Request that the file-deletions on the receiving side be computed during
the transfer (like --delete-during), and then removed after the transfer
completes. This is useful when combined with --delay-updates and/or
--fuzzy, and is more efficient than using --delete-after (but can behave
differently, since --delete-after computes the deletions in a separate pass
after all updates are done). If the number of removed files overflows an
internal buffer, a temporary file will be created on the receiving side to
hold the names (it is removed while open, so you shouldn't see it during
the transfer). If the creation of the temporary file fails, rsync will try to fall
back to using --delete-after (which it cannot do if --recursive is doing an
incremental scan). See --delete (which is implied) for more details on
file-deletion.

--delete-after
Request that the file-deletions on the receiving side be done after the
transfer has completed. This is useful if you are sending new per-directory
merge files as a part of the transfer and you want their exclusions to take
effect for the delete phase of the current transfer. It also forces rsync to
use the old, non-incremental recursion algorithm that requires rsync to
scan all the files in the transfer into memory at once (see --recursive).
See --delete (which is implied) for more details on file-deletion.

--delete-excluded
In addition to deleting the files on the receiving side that are not on the
sending side, this tells rsync to also delete any files on the receiving side
that are excluded (see --exclude). See the FILTER RULES section for a

rsync http://rsync.samba.org/ftp/rsync/rsync.html

27 de 67 28/04/14 13:58

way to make individual exclusions behave this way on the receiver, and for
a way to protect files from --delete-excluded. See --delete (which is
implied) for more details on file-deletion.

--ignore-missing-args
When rsync is first processing the explicitly requested source files (e.g.
command-line arguments or --files-from entries), it is normally an error if
the file cannot be found. This option suppresses that error, and does not
try to transfer the file. This does not affect subsequent vanished-file errors
if a file was initially found to be present and later is no longer there.

--delete-missing-args
This option takes the behavior of (the implied) --ignore-missing-args
option a step farther: each missing arg will become a deletion request of
the corresponding destination file on the receiving side (should it exist). If
the destination file is a non-empty directory, it will only be successfully
deleted if --force or --delete are in effect. Other than that, this option is
independent of any other type of delete processing.

The missing source files are represented by special file-list entries which
display as a "*missing" entry in the --list-only output.

--ignore-errors
Tells --delete to go ahead and delete files even when there are I/O errors.

--force
This option tells rsync to delete a non-empty directory when it is to be
replaced by a non-directory. This is only relevant if deletions are not active
(see --delete for details).

Note for older rsync versions: --force used to still be required when using
--delete-after, and it used to be non-functional unless the --recursive
option was also enabled.

--max-delete=NUM
This tells rsync not to delete more than NUM files or directories. If that
limit is exceeded, all further deletions are skipped through the end of the
transfer. At the end, rsync outputs a warning (including a count of the
skipped deletions) and exits with an error code of 25 (unless some more
important error condition also occurred).

Beginning with version 3.0.0, you may specify --max-delete=0 to be
warned about any extraneous files in the destination without removing
any of them. Older clients interpreted this as "unlimited", so if you don't
know what version the client is, you can use the less obvious --max-
delete=-1 as a backward-compatible way to specify that no deletions be
allowed (though really old versions didn't warn when the limit was
exceeded).

--max-size=SIZE
This tells rsync to avoid transferring any file that is larger than the

rsync http://rsync.samba.org/ftp/rsync/rsync.html

28 de 67 28/04/14 13:58

specified SIZE. The SIZE value can be suffixed with a string to indicate a
size multiplier, and may be a fractional value (e.g. "--max-size=1.5m").

This option is a transfer rule, not an exclude, so it doesn't affect the data
that goes into the file-lists, and thus it doesn't affect deletions. It just
limits the files that the receiver requests to be transferred.

The suffixes are as follows: "K" (or "KiB") is a kibibyte (1024), "M" (or
"MiB") is a mebibyte (1024*1024), and "G" (or "GiB") is a gibibyte
(1024*1024*1024). If you want the multiplier to be 1000 instead of 1024,
use "KB", "MB", or "GB". (Note: lower-case is also accepted for all values.)
Finally, if the suffix ends in either "+1" or "-1", the value will be offset by
one byte in the indicated direction.

Examples: --max-size=1.5mb-1 is 1499999 bytes, and --max-size=2g+1 is
2147483649 bytes.

Note that rsync versions prior to 3.1.0 did not allow --max-size=0.

--min-size=SIZE
This tells rsync to avoid transferring any file that is smaller than the
specified SIZE, which can help in not transferring small, junk files. See
the --max-size option for a description of SIZE and other information.

Note that rsync versions prior to 3.1.0 did not allow --min-size=0.

-B, --block-size=BLOCKSIZE
This forces the block size used in rsync's delta-transfer algorithm to a
fixed value. It is normally selected based on the size of each file being
updated. See the technical report for details.

-e, --rsh=COMMAND
This option allows you to choose an alternative remote shell program to
use for communication between the local and remote copies of rsync.
Typically, rsync is configured to use ssh by default, but you may prefer to
use rsh on a local network.

If this option is used with [user@]host::module/path, then the remote
shell COMMAND will be used to run an rsync daemon on the remote host,
and all data will be transmitted through that remote shell connection,
rather than through a direct socket connection to a running rsync daemon
on the remote host. See the section "USING RSYNC-DAEMON FEATURES
VIA A REMOTE-SHELL CONNECTION" above.

Command-line arguments are permitted in COMMAND provided that
COMMAND is presented to rsync as a single argument. You must use
spaces (not tabs or other whitespace) to separate the command and args
from each other, and you can use single- and/or double-quotes to preserve
spaces in an argument (but not backslashes). Note that doubling a
single-quote inside a single-quoted string gives you a single-quote;
likewise for double-quotes (though you need to pay attention to which

rsync http://rsync.samba.org/ftp/rsync/rsync.html

29 de 67 28/04/14 13:58

quotes your shell is parsing and which quotes rsync is parsing). Some
examples:

-e 'ssh -p 2234'
-e 'ssh -o "ProxyCommand nohup ssh firewall nc -w1 %h %p"'

(Note that ssh users can alternately customize site-specific connect
options in their .ssh/config file.)

You can also choose the remote shell program using the RSYNC_RSH
environment variable, which accepts the same range of values as -e.

See also the --blocking-io option which is affected by this option.

--rsync-path=PROGRAM
Use this to specify what program is to be run on the remote machine to
start-up rsync. Often used when rsync is not in the default remote-shell's
path (e.g. --rsync-path=/usr/local/bin/rsync). Note that PROGRAM is run
with the help of a shell, so it can be any program, script, or command
sequence you'd care to run, so long as it does not corrupt the standard-in
& standard-out that rsync is using to communicate.

One tricky example is to set a different default directory on the remote
machine for use with the --relative option. For instance:

rsync -avR --rsync-path="cd /a/b && rsync" host:c/d /e/

-M, --remote-option=OPTION
This option is used for more advanced situations where you want certain
effects to be limited to one side of the transfer only. For instance, if you
want to pass --log-file=FILE and --fake-super to the remote system,
specify it like this:

rsync -av -M --log-file=foo -M--fake-super src/ dest/

If you want to have an option affect only the local side of a transfer when
it normally affects both sides, send its negation to the remote side. Like
this:

rsync -av -x -M--no-x src/ dest/

Be cautious using this, as it is possible to toggle an option that will cause
rsync to have a different idea about what data to expect next over the
socket, and that will make it fail in a cryptic fashion.

Note that it is best to use a separate --remote-option for each option you
want to pass. This makes your useage compatible with the --protect-args
option. If that option is off, any spaces in your remote options will be split
by the remote shell unless you take steps to protect them.

When performing a local transfer, the "local" side is the sender and the
"remote" side is the receiver.

rsync http://rsync.samba.org/ftp/rsync/rsync.html

30 de 67 28/04/14 13:58

Note some versions of the popt option-parsing library have a bug in them
that prevents you from using an adjacent arg with an equal in it next to a
short option letter (e.g. -M--log-file=/tmp/foo. If this bug affects your version
of popt, you can use the version of popt that is included with rsync.

-C, --cvs-exclude
This is a useful shorthand for excluding a broad range of files that you
often don't want to transfer between systems. It uses a similar algorithm
to CVS to determine if a file should be ignored.

The exclude list is initialized to exclude the following items (these initial
items are marked as perishable -- see the FILTER RULES section):

RCS SCCS CVS CVS.adm RCSLOG cvslog.* tags TAGS .make.state
.nse_depinfo *~ #* .#* ,* _$* *$ *.old *.bak *.BAK *.orig
.rej .del- *.a *.olb *.o *.obj *.so *.exe *.Z *.elc *.ln
core .svn/ .git/ .hg/ .bzr/

then, files listed in a $HOME/.cvsignore are added to the list and any files
listed in the CVSIGNORE environment variable (all cvsignore names are
delimited by whitespace).

Finally, any file is ignored if it is in the same directory as a .cvsignore file
and matches one of the patterns listed therein. Unlike rsync's
filter/exclude files, these patterns are split on whitespace. See the cvs(1)
manual for more information.

If you're combining -C with your own --filter rules, you should note that
these CVS excludes are appended at the end of your own rules, regardless
of where the -C was placed on the command-line. This makes them a
lower priority than any rules you specified explicitly. If you want to control
where these CVS excludes get inserted into your filter rules, you should
omit the -C as a command-line option and use a combination of --filter=:C
and --filter=-C (either on your command-line or by putting the ":C" and
"-C" rules into a filter file with your other rules). The first option turns on
the per-directory scanning for the .cvsignore file. The second option does
a one-time import of the CVS excludes mentioned above.

-f, --filter=RULE
This option allows you to add rules to selectively exclude certain files from
the list of files to be transferred. This is most useful in combination with a
recursive transfer.

You may use as many --filter options on the command line as you like to
build up the list of files to exclude. If the filter contains whitespace, be
sure to quote it so that the shell gives the rule to rsync as a single
argument. The text below also mentions that you can use an underscore to
replace the space that separates a rule from its arg.

See the FILTER RULES section for detailed information on this option.

-F

rsync http://rsync.samba.org/ftp/rsync/rsync.html

31 de 67 28/04/14 13:58

The -F option is a shorthand for adding two --filter rules to your
command. The first time it is used is a shorthand for this rule:

--filter='dir-merge /.rsync-filter'

This tells rsync to look for per-directory .rsync-filter files that have been
sprinkled through the hierarchy and use their rules to filter the files in the
transfer. If -F is repeated, it is a shorthand for this rule:

--filter='exclude .rsync-filter'

This filters out the .rsync-filter files themselves from the transfer.

See the FILTER RULES section for detailed information on how these
options work.

--exclude=PATTERN
This option is a simplified form of the --filter option that defaults to an
exclude rule and does not allow the full rule-parsing syntax of normal
filter rules.

See the FILTER RULES section for detailed information on this option.

--exclude-from=FILE
This option is related to the --exclude option, but it specifies a FILE that
contains exclude patterns (one per line). Blank lines in the file and lines
starting with ';' or '#' are ignored. If FILE is -, the list will be read from
standard input.

--include=PATTERN
This option is a simplified form of the --filter option that defaults to an
include rule and does not allow the full rule-parsing syntax of normal filter
rules.

See the FILTER RULES section for detailed information on this option.

--include-from=FILE
This option is related to the --include option, but it specifies a FILE that
contains include patterns (one per line). Blank lines in the file and lines
starting with ';' or '#' are ignored. If FILE is -, the list will be read from
standard input.

--files-from=FILE
Using this option allows you to specify the exact list of files to transfer (as
read from the specified FILE or - for standard input). It also tweaks the
default behavior of rsync to make transferring just the specified files and
directories easier:

The --relative (-R) option is implied, which preserves the
path information that is specified for each item in the file
(use --no-relative or --no-R if you want to turn that off).
The --dirs (-d) option is implied, which will create

rsync http://rsync.samba.org/ftp/rsync/rsync.html

32 de 67 28/04/14 13:58

directories specified in the list on the destination rather
than noisily skipping them (use --no-dirs or --no-d if you
want to turn that off).
The --archive (-a) option's behavior does not imply
--recursive (-r), so specify it explicitly, if you want it.
These side-effects change the default state of rsync, so the
position of the --files-from option on the command-line has
no bearing on how other options are parsed (e.g. -a works
the same before or after --files-from, as does --no-R and
all other options).

The filenames that are read from the FILE are all relative to the source dir
-- any leading slashes are removed and no ".." references are allowed to
go higher than the source dir. For example, take this command:

rsync -a --files-from=/tmp/foo /usr remote:/backup

If /tmp/foo contains the string "bin" (or even "/bin"), the /usr/bin directory
will be created as /backup/bin on the remote host. If it contains "bin/"
(note the trailing slash), the immediate contents of the directory would
also be sent (without needing to be explicitly mentioned in the file -- this
began in version 2.6.4). In both cases, if the -r option was enabled, that
dir's entire hierarchy would also be transferred (keep in mind that -r
needs to be specified explicitly with --files-from, since it is not implied by
-a). Also note that the effect of the (enabled by default) --relative option
is to duplicate only the path info that is read from the file -- it does not
force the duplication of the source-spec path (/usr in this case).

In addition, the --files-from file can be read from the remote host instead
of the local host if you specify a "host:" in front of the file (the host must
match one end of the transfer). As a short-cut, you can specify just a prefix
of ":" to mean "use the remote end of the transfer". For example:

rsync -a --files-from=:/path/file-list src:/ /tmp/copy

This would copy all the files specified in the /path/file-list file that was
located on the remote "src" host.

If the --iconv and --protect-args options are specified and the
--files-from filenames are being sent from one host to another, the
filenames will be translated from the sending host's charset to the
receiving host's charset.

NOTE: sorting the list of files in the --files-from input helps rsync to be
more efficient, as it will avoid re-visiting the path elements that are
shared between adjacent entries. If the input is not sorted, some path
elements (implied directories) may end up being scanned multiple times,
and rsync will eventually unduplicate them after they get turned into
file-list elements.

-0, --from0

rsync http://rsync.samba.org/ftp/rsync/rsync.html

33 de 67 28/04/14 13:58

This tells rsync that the rules/filenames it reads from a file are terminated
by a null ('\0') character, not a NL, CR, or CR+LF. This affects
--exclude-from, --include-from, --files-from, and any merged files
specified in a --filter rule. It does not affect --cvs-exclude (since all
names read from a .cvsignore file are split on whitespace).

-s, --protect-args
This option sends all filenames and most options to the remote rsync
without allowing the remote shell to interpret them. This means that
spaces are not split in names, and any non-wildcard special characters are
not translated (such as ~, $, ;, &, etc.). Wildcards are expanded on the
remote host by rsync (instead of the shell doing it).

If you use this option with --iconv, the args related to the remote side will
also be translated from the local to the remote character-set. The
translation happens before wild-cards are expanded. See also the
--files-from option.

You may also control this option via the RSYNC_PROTECT_ARGS
environment variable. If this variable has a non-zero value, this option will
be enabled by default, otherwise it will be disabled by default. Either state
is overridden by a manually specified positive or negative version of this
option (note that --no-s and --no-protect-args are the negative versions).
Since this option was first introduced in 3.0.0, you'll need to make sure
it's disabled if you ever need to interact with a remote rsync that is older
than that.

Rsync can also be configured (at build time) to have this option enabled by
default (with is overridden by both the environment and the command-
line). This option will eventually become a new default setting at some
as-yet-undetermined point in the future.

-T, --temp-dir=DIR
This option instructs rsync to use DIR as a scratch directory when
creating temporary copies of the files transferred on the receiving side.
The default behavior is to create each temporary file in the same directory
as the associated destination file.

This option is most often used when the receiving disk partition does not
have enough free space to hold a copy of the largest file in the transfer. In
this case (i.e. when the scratch directory is on a different disk partition),
rsync will not be able to rename each received temporary file over the top
of the associated destination file, but instead must copy it into place.
Rsync does this by copying the file over the top of the destination file,
which means that the destination file will contain truncated data during
this copy. If this were not done this way (even if the destination file were
first removed, the data locally copied to a temporary file in the destination
directory, and then renamed into place) it would be possible for the old
file to continue taking up disk space (if someone had it open), and thus
there might not be enough room to fit the new version on the disk at the

rsync http://rsync.samba.org/ftp/rsync/rsync.html

34 de 67 28/04/14 13:58

same time.

If you are using this option for reasons other than a shortage of disk
space, you may wish to combine it with the --delay-updates option, which
will ensure that all copied files get put into subdirectories in the
destination hierarchy, awaiting the end of the transfer. If you don't have
enough room to duplicate all the arriving files on the destination partition,
another way to tell rsync that you aren't overly concerned about disk
space is to use the --partial-dir option with a relative path; because this
tells rsync that it is OK to stash off a copy of a single file in a subdir in the
destination hierarchy, rsync will use the partial-dir as a staging area to
bring over the copied file, and then rename it into place from there.
(Specifying a --partial-dir with an absolute path does not have this
side-effect.)

-y, --fuzzy
This option tells rsync that it should look for a basis file for any
destination file that is missing. The current algorithm looks in the same
directory as the destination file for either a file that has an identical size
and modified-time, or a similarly-named file. If found, rsync uses the fuzzy
basis file to try to speed up the transfer.

If the option is repeated, the fuzzy scan will also be done in any matching
alternate destination directories that are specified via --compare-dest,
--copy-dest, or --link-dest.

Note that the use of the --delete option might get rid of any potential
fuzzy-match files, so either use --delete-after or specify some filename
exclusions if you need to prevent this.

--compare-dest=DIR
This option instructs rsync to use DIR on the destination machine as an
additional hierarchy to compare destination files against doing transfers
(if the files are missing in the destination directory). If a file is found in
DIR that is identical to the sender's file, the file will NOT be transferred to
the destination directory. This is useful for creating a sparse backup of
just files that have changed from an earlier backup. This option is typically
used to copy into an empty (or newly created) directory.

Beginning in version 2.6.4, multiple --compare-dest directories may be
provided, which will cause rsync to search the list in the order specified
for an exact match. If a match is found that differs only in attributes, a
local copy is made and the attributes updated. If a match is not found, a
basis file from one of the DIRs will be selected to try to speed up the
transfer.

If DIR is a relative path, it is relative to the destination directory. See also
--copy-dest and --link-dest.

NOTE: beginning with version 3.1.0, rsync will remove a file from a
non-empty destination hierarchy if an exact match is found in one of the

rsync http://rsync.samba.org/ftp/rsync/rsync.html

35 de 67 28/04/14 13:58

compare-dest hierarchies (making the end result more closely match a
fresh copy).

--copy-dest=DIR
This option behaves like --compare-dest, but rsync will also copy
unchanged files found in DIR to the destination directory using a local
copy. This is useful for doing transfers to a new destination while leaving
existing files intact, and then doing a flash-cutover when all files have
been successfully transferred.

Multiple --copy-dest directories may be provided, which will cause rsync
to search the list in the order specified for an unchanged file. If a match is
not found, a basis file from one of the DIRs will be selected to try to speed
up the transfer.

If DIR is a relative path, it is relative to the destination directory. See also
--compare-dest and --link-dest.

--link-dest=DIR
This option behaves like --copy-dest, but unchanged files are hard linked
from DIR to the destination directory. The files must be identical in all
preserved attributes (e.g. permissions, possibly ownership) in order for
the files to be linked together. An example:

rsync -av --link-dest=$PWD/prior_dir host:src_dir/ new_dir/

If file's aren't linking, double-check their attributes. Also check if some
attributes are getting forced outside of rsync's control, such a mount
option that squishes root to a single user, or mounts a removable drive
with generic ownership (such as OS X's "Ignore ownership on this
volume" option).

Beginning in version 2.6.4, multiple --link-dest directories may be
provided, which will cause rsync to search the list in the order specified
for an exact match. If a match is found that differs only in attributes, a
local copy is made and the attributes updated. If a match is not found, a
basis file from one of the DIRs will be selected to try to speed up the
transfer.

This option works best when copying into an empty destination hierarchy,
as existing files may get their attributes tweaked, and that can affect
alternate destination files via hard-links. Also, itemizing of changes can
get a bit muddled. Note that prior to version 3.1.0, an alternate-directory
exact match would never be found (nor linked into the destination) when a
destination file already exists.

Note that if you combine this option with --ignore-times, rsync will not
link any files together because it only links identical files together as a
substitute for transferring the file, never as an additional check after the
file is updated.

rsync http://rsync.samba.org/ftp/rsync/rsync.html

36 de 67 28/04/14 13:58

If DIR is a relative path, it is relative to the destination directory. See also
--compare-dest and --copy-dest.

Note that rsync versions prior to 2.6.1 had a bug that could prevent
--link-dest from working properly for a non-super-user when -o was
specified (or implied by -a). You can work-around this bug by avoiding the
-o option when sending to an old rsync.

-z, --compress
With this option, rsync compresses the file data as it is sent to the
destination machine, which reduces the amount of data being transmitted
-- something that is useful over a slow connection.

Note that this option typically achieves better compression ratios than can
be achieved by using a compressing remote shell or a compressing
transport because it takes advantage of the implicit information in the
matching data blocks that are not explicitly sent over the connection.

See the --skip-compress option for the default list of file suffixes that will
not be compressed.

--compress-level=NUM
Explicitly set the compression level to use (see --compress) instead of
letting it default. If NUM is non-zero, the --compress option is implied.

--skip-compress=LIST
Override the list of file suffixes that will not be compressed. The LIST
should be one or more file suffixes (without the dot) separated by slashes
(/).

You may specify an empty string to indicate that no file should be skipped.

Simple character-class matching is supported: each must consist of a list
of letters inside the square brackets (e.g. no special classes, such as
"[:alpha:]", are supported, and '-' has no special meaning).

The characters asterisk (*) and question-mark (?) have no special
meaning.

Here's an example that specifies 6 suffixes to skip (since 1 of the 5 rules
matches 2 suffixes):

 --skip-compress=gz/jpg/mp[34]/7z/bz2

The default list of suffixes that will not be compressed is this (in this
version of rsync):

7z ace avi bz2 deb gpg gz iso jpeg jpg lz lzma lzo mov mp3 mp4 ogg
png rar rpm rzip tbz tgz tlz txz xz z zip

This list will be replaced by your --skip-compress list in all but one
situation: a copy from a daemon rsync will add your skipped suffixes to its

rsync http://rsync.samba.org/ftp/rsync/rsync.html

37 de 67 28/04/14 13:58

list of non-compressing files (and its list may be configured to a different
default).

--numeric-ids
With this option rsync will transfer numeric group and user IDs rather
than using user and group names and mapping them at both ends.

By default rsync will use the username and groupname to determine what
ownership to give files. The special uid 0 and the special group 0 are
never mapped via user/group names even if the --numeric-ids option is
not specified.

If a user or group has no name on the source system or it has no match on
the destination system, then the numeric ID from the source system is
used instead. See also the comments on the "use chroot" setting in the
rsyncd.conf manpage for information on how the chroot setting affects
rsync's ability to look up the names of the users and groups and what you
can do about it.

--usermap=STRING, --groupmap=STRING
These options allow you to specify users and groups that should be
mapped to other values by the receiving side. The STRING is one or more
FROM:TO pairs of values separated by commas. Any matching FROM
value from the sender is replaced with a TO value from the receiver. You
may specify usernames or user IDs for the FROM and TO values, and the
FROM value may also be a wild-card string, which will be matched
against the sender's names (wild-cards do NOT match against ID
numbers, though see below for why a '*' matches everything). You may
instead specify a range of ID numbers via an inclusive range: LOW-HIGH.
For example:

 --usermap=0-99:nobody,wayne:admin,*:normal --groupmap=usr:1,1:usr

The first match in the list is the one that is used. You should specify all
your user mappings using a single --usermap option, and/or all your
group mappings using a single --groupmap option.

Note that the sender's name for the 0 user and group are not transmitted
to the receiver, so you should either match these values using a 0, or use
the names in effect on the receiving side (typically "root"). All other
FROM names match those in use on the sending side. All TO names
match those in use on the receiving side.

Any IDs that do not have a name on the sending side are treated as having
an empty name for the purpose of matching. This allows them to be
matched via a "*" or using an empty name. For instance:

 --usermap=:nobody --groupmap=*:nobody

When the --numeric-ids option is used, the sender does not send any
names, so all the IDs are treated as having an empty name. This means
that you will need to specify numeric FROM values if you want to map

rsync http://rsync.samba.org/ftp/rsync/rsync.html

38 de 67 28/04/14 13:58

these nameless IDs to different values.

For the --usermap option to have any effect, the -o (--owner) option must
be used (or implied), and the receiver will need to be running as a
super-user (see also the --fake-super option). For the --groupmap option
to have any effect, the -g (--groups) option must be used (or implied), and
the receiver will need to have permissions to set that group.

--chown=USER:GROUP
This option forces all files to be owned by USER with group GROUP. This
is a simpler interface than using --usermap and --groupmap directly, but
it is implemented using those options internally, so you cannot mix them.
If either the USER or GROUP is empty, no mapping for the omitted
user/group will occur. If GROUP is empty, the trailing colon may be
omitted, but if USER is empty, a leading colon must be supplied.

If you specify "--chown=foo:bar, this is exactly the same as specifying
"--usermap=*:foo --groupmap=*:bar", only easier.

--timeout=TIMEOUT
This option allows you to set a maximum I/O timeout in seconds. If no data
is transferred for the specified time then rsync will exit. The default is 0,
which means no timeout.

--contimeout
This option allows you to set the amount of time that rsync will wait for its
connection to an rsync daemon to succeed. If the timeout is reached,
rsync exits with an error.

--address
By default rsync will bind to the wildcard address when connecting to an
rsync daemon. The --address option allows you to specify a specific IP
address (or hostname) to bind to. See also this option in the --daemon
mode section.

--port=PORT
This specifies an alternate TCP port number to use rather than the default
of 873. This is only needed if you are using the double-colon (::) syntax to
connect with an rsync daemon (since the URL syntax has a way to specify
the port as a part of the URL). See also this option in the --daemon mode
section.

--sockopts
This option can provide endless fun for people who like to tune their
systems to the utmost degree. You can set all sorts of socket options
which may make transfers faster (or slower!). Read the man page for the
setsockopt() system call for details on some of the options you may be able
to set. By default no special socket options are set. This only affects direct
socket connections to a remote rsync daemon. This option also exists in
the --daemon mode section.

rsync http://rsync.samba.org/ftp/rsync/rsync.html

39 de 67 28/04/14 13:58

--blocking-io
This tells rsync to use blocking I/O when launching a remote shell
transport. If the remote shell is either rsh or remsh, rsync defaults to
using blocking I/O, otherwise it defaults to using non-blocking I/O. (Note
that ssh prefers non-blocking I/O.)

--outbuf=MODE
This sets the output buffering mode. The mode can be None (aka
Unbuffered), Line, or Block (aka Full). You may specify as little as a single
letter for the mode, and use upper or lower case.

The main use of this option is to change Full buffering to Line buffering
when rsync's output is going to a file or pipe.

-i, --itemize-changes
Requests a simple itemized list of the changes that are being made to
each file, including attribute changes. This is exactly the same as
specifying --out-format='%i %n%L'. If you repeat the option, unchanged
files will also be output, but only if the receiving rsync is at least version
2.6.7 (you can use -vv with older versions of rsync, but that also turns on
the output of other verbose messages).

The "%i" escape has a cryptic output that is 11 letters long. The general
format is like the string YXcstpoguax, where Y is replaced by the type of
update being done, X is replaced by the file-type, and the other letters
represent attributes that may be output if they are being modified.

The update types that replace the Y are as follows:

A < means that a file is being transferred to the remote
host (sent).
A > means that a file is being transferred to the local host
(received).
A c means that a local change/creation is occurring for the
item (such as the creation of a directory or the changing of
a symlink, etc.).
A h means that the item is a hard link to another item
(requires --hard-links).
A . means that the item is not being updated (though it
might have attributes that are being modified).
A * means that the rest of the itemized-output area
contains a message (e.g. "deleting").

The file-types that replace the X are: f for a file, a d for a directory, an L
for a symlink, a D for a device, and a S for a special file (e.g. named
sockets and fifos).

The other letters in the string above are the actual letters that will be
output if the associated attribute for the item is being updated or a "." for
no change. Three exceptions to this are: (1) a newly created item replaces
each letter with a "+", (2) an identical item replaces the dots with spaces,

rsync http://rsync.samba.org/ftp/rsync/rsync.html

40 de 67 28/04/14 13:58

and (3) an unknown attribute replaces each letter with a "?" (this can
happen when talking to an older rsync).

The attribute that is associated with each letter is as follows:

A c means either that a regular file has a different
checksum (requires --checksum) or that a symlink, device,
or special file has a changed value. Note that if you are
sending files to an rsync prior to 3.0.1, this change flag will
be present only for checksum-differing regular files.
A s means the size of a regular file is different and will be
updated by the file transfer.
A t means the modification time is different and is being
updated to the sender's value (requires --times). An
alternate value of T means that the modification time will
be set to the transfer time, which happens when a
file/symlink/device is updated without --times and when a
symlink is changed and the receiver can't set its time.
(Note: when using an rsync 3.0.0 client, you might see the
s flag combined with t instead of the proper T flag for this
time-setting failure.)
A p means the permissions are different and are being
updated to the sender's value (requires --perms).
An o means the owner is different and is being updated to
the sender's value (requires --owner and super-user
privileges).
A g means the group is different and is being updated to
the sender's value (requires --group and the authority to
set the group).
The u slot is reserved for future use.
The a means that the ACL information changed.
The x means that the extended attribute information
changed.

One other output is possible: when deleting files, the "%i" will output the
string "*deleting" for each item that is being removed (assuming that you
are talking to a recent enough rsync that it logs deletions instead of
outputting them as a verbose message).

--out-format=FORMAT
This allows you to specify exactly what the rsync client outputs to the user
on a per-update basis. The format is a text string containing embedded
single-character escape sequences prefixed with a percent (%) character.
A default format of "%n%L" is assumed if either --info=name or -v is
specified (this tells you just the name of the file and, if the item is a link,
where it points). For a full list of the possible escape characters, see the
"log format" setting in the rsyncd.conf manpage.

Specifying the --out-format option implies the --info=name option,
which will mention each file, dir, etc. that gets updated in a significant

rsync http://rsync.samba.org/ftp/rsync/rsync.html

41 de 67 28/04/14 13:58

way (a transferred file, a recreated symlink/device, or a touched
directory). In addition, if the itemize-changes escape (%i) is included in
the string (e.g. if the --itemize-changes option was used), the logging of
names increases to mention any item that is changed in any way (as long
as the receiving side is at least 2.6.4). See the --itemize-changes option
for a description of the output of "%i".

Rsync will output the out-format string prior to a file's transfer unless one
of the transfer-statistic escapes is requested, in which case the logging is
done at the end of the file's transfer. When this late logging is in effect
and --progress is also specified, rsync will also output the name of the file
being transferred prior to its progress information (followed, of course, by
the out-format output).

--log-file=FILE
This option causes rsync to log what it is doing to a file. This is similar to
the logging that a daemon does, but can be requested for the client side
and/or the server side of a non-daemon transfer. If specified as a client
option, transfer logging will be enabled with a default format of "%i
%n%L". See the --log-file-format option if you wish to override this.

Here's a example command that requests the remote side to log what is
happening:

 rsync -av --remote-option=--log-file=/tmp/rlog src/ dest/

This is very useful if you need to debug why a connection is closing
unexpectedly.

--log-file-format=FORMAT
This allows you to specify exactly what per-update logging is put into the
file specified by the --log-file option (which must also be specified for this
option to have any effect). If you specify an empty string, updated files will
not be mentioned in the log file. For a list of the possible escape
characters, see the "log format" setting in the rsyncd.conf manpage.

The default FORMAT used if --log-file is specified and this option is not is
'%i %n%L'.

--stats
This tells rsync to print a verbose set of statistics on the file transfer,
allowing you to tell how effective rsync's delta-transfer algorithm is for
your data. This option is equivalent to --info=stats2 if combined with 0 or
1 -v options, or --info=stats3 if combined with 2 or more -v options.

The current statistics are as follows:

Number of files is the count of all "files" (in the generic
sense), which includes directories, symlinks, etc. The total
count will be followed by a list of counts by filetype (if the
total is non-zero). For example: "(reg: 5, dir: 3, link: 2, dev:

rsync http://rsync.samba.org/ftp/rsync/rsync.html

42 de 67 28/04/14 13:58

1, special: 1)" lists the totals for regular files, directories,
symlinks, devices, and special files. If any of value is 0, it is
completely omitted from the list.
Number of created files is the count of how many "files"
(generic sense) were created (as opposed to updated). The
total count will be followed by a list of counts by filetype (if
the total is non-zero).
Number of deleted files is the count of how many "files"
(generic sense) were created (as opposed to updated). The
total count will be followed by a list of counts by filetype (if
the total is non-zero). Note that this line is only output if
deletions are in effect, and only if protocol 31 is being used
(the default for rsync 3.1.x).
Number of regular files transferred is the count of
normal files that were updated via rsync's delta-transfer
algorithm, which does not include dirs, symlinks, etc. Note
that rsync 3.1.0 added the word "regular" into this heading.
Total file size is the total sum of all file sizes in the
transfer. This does not count any size for directories or
special files, but does include the size of symlinks.
Total transferred file size is the total sum of all files sizes
for just the transferred files.
Literal data is how much unmatched file-update data we
had to send to the receiver for it to recreate the updated
files.
Matched data is how much data the receiver got locally
when recreating the updated files.
File list size is how big the file-list data was when the
sender sent it to the receiver. This is smaller than the
in-memory size for the file list due to some compressing of
duplicated data when rsync sends the list.
File list generation time is the number of seconds that
the sender spent creating the file list. This requires a
modern rsync on the sending side for this to be present.
File list transfer time is the number of seconds that the
sender spent sending the file list to the receiver.
Total bytes sent is the count of all the bytes that rsync
sent from the client side to the server side.
Total bytes received is the count of all non-message bytes
that rsync received by the client side from the server side.
"Non-message" bytes means that we don't count the bytes
for a verbose message that the server sent to us, which
makes the stats more consistent.

-8, --8-bit-output
This tells rsync to leave all high-bit characters unescaped in the output
instead of trying to test them to see if they're valid in the current locale
and escaping the invalid ones. All control characters (but never tabs) are
always escaped, regardless of this option's setting.

rsync http://rsync.samba.org/ftp/rsync/rsync.html

43 de 67 28/04/14 13:58

The escape idiom that started in 2.6.7 is to output a literal backslash (\)
and a hash (#), followed by exactly 3 octal digits. For example, a newline
would output as "\#012". A literal backslash that is in a filename is not
escaped unless it is followed by a hash and 3 digits (0-9).

-h, --human-readable
Output numbers in a more human-readable format. There are 3 possible
levels: (1) output numbers with a separator between each set of 3 digits
(either a comma or a period, depending on if the decimal point is
represented by a period or a comma); (2) output numbers in units of 1000
(with a character suffix for larger units -- see below); (3) output numbers
in units of 1024.

The default is human-readable level 1. Each -h option increases the level
by one. You can take the level down to 0 (to output numbers as pure
digits) by specifing the --no-human-readable (--no-h) option.

The unit letters that are appended in levels 2 and 3 are: K (kilo), M
(mega), G (giga), or T (tera). For example, a 1234567-byte file would
output as 1.23M in level-2 (assuming that a period is your local decimal
point).

Backward compatibility note: versions of rsync prior to 3.1.0 do not
support human-readable level 1, and they default to level 0. Thus,
specifying one or two -h options will behave in a comparable manner in
old and new versions as long as you didn't specify a --no-h option prior to
one or more -h options. See the --list-only option for one difference.

--partial
By default, rsync will delete any partially transferred file if the transfer is
interrupted. In some circumstances it is more desirable to keep partially
transferred files. Using the --partial option tells rsync to keep the partial
file which should make a subsequent transfer of the rest of the file much
faster.

--partial-dir=DIR
A better way to keep partial files than the --partial option is to specify a
DIR that will be used to hold the partial data (instead of writing it out to
the destination file). On the next transfer, rsync will use a file found in this
dir as data to speed up the resumption of the transfer and then delete it
after it has served its purpose.

Note that if --whole-file is specified (or implied), any partial-dir file that is
found for a file that is being updated will simply be removed (since rsync
is sending files without using rsync's delta-transfer algorithm).

Rsync will create the DIR if it is missing (just the last dir -- not the whole
path). This makes it easy to use a relative path (such as "--partial-
dir=.rsync-partial") to have rsync create the partial-directory in the
destination file's directory when needed, and then remove it again when
the partial file is deleted.

rsync http://rsync.samba.org/ftp/rsync/rsync.html

44 de 67 28/04/14 13:58

If the partial-dir value is not an absolute path, rsync will add an exclude
rule at the end of all your existing excludes. This will prevent the sending
of any partial-dir files that may exist on the sending side, and will also
prevent the untimely deletion of partial-dir items on the receiving side. An
example: the above --partial-dir option would add the equivalent of "-f
'-p .rsync-partial/'" at the end of any other filter rules.

If you are supplying your own exclude rules, you may need to add your
own exclude/hide/protect rule for the partial-dir because (1) the
auto-added rule may be ineffective at the end of your other rules, or (2)
you may wish to override rsync's exclude choice. For instance, if you want
to make rsync clean-up any left-over partial-dirs that may be lying around,
you should specify --delete-after and add a "risk" filter rule, e.g. -f 'R
.rsync-partial/'. (Avoid using --delete-before or --delete-during unless
you don't need rsync to use any of the left-over partial-dir data during the
current run.)

IMPORTANT: the --partial-dir should not be writable by other users or it
is a security risk. E.g. AVOID "/tmp".

You can also set the partial-dir value the RSYNC_PARTIAL_DIR
environment variable. Setting this in the environment does not force
--partial to be enabled, but rather it affects where partial files go when
--partial is specified. For instance, instead of using --partial-
dir=.rsync-tmp along with --progress, you could set
RSYNC_PARTIAL_DIR=.rsync-tmp in your environment and then just use
the -P option to turn on the use of the .rsync-tmp dir for partial transfers.
The only times that the --partial option does not look for this environment
value are (1) when --inplace was specified (since --inplace conflicts with
--partial-dir), and (2) when --delay-updates was specified (see below).

For the purposes of the daemon-config's "refuse options" setting,
--partial-dir does not imply --partial. This is so that a refusal of the
--partial option can be used to disallow the overwriting of destination
files with a partial transfer, while still allowing the safer idiom provided by
--partial-dir.

--delay-updates
This option puts the temporary file from each updated file into a holding
directory until the end of the transfer, at which time all the files are
renamed into place in rapid succession. This attempts to make the
updating of the files a little more atomic. By default the files are placed
into a directory named ".~tmp~" in each file's destination directory, but if
you've specified the --partial-dir option, that directory will be used
instead. See the comments in the --partial-dir section for a discussion of
how this ".~tmp~" dir will be excluded from the transfer, and what you
can do if you want rsync to cleanup old ".~tmp~" dirs that might be lying
around. Conflicts with --inplace and --append.

This option uses more memory on the receiving side (one bit per file

rsync http://rsync.samba.org/ftp/rsync/rsync.html

45 de 67 28/04/14 13:58

transferred) and also requires enough free disk space on the receiving
side to hold an additional copy of all the updated files. Note also that you
should not use an absolute path to --partial-dir unless (1) there is no
chance of any of the files in the transfer having the same name (since all
the updated files will be put into a single directory if the path is absolute)
and (2) there are no mount points in the hierarchy (since the delayed
updates will fail if they can't be renamed into place).

See also the "atomic-rsync" perl script in the "support" subdir for an
update algorithm that is even more atomic (it uses --link-dest and a
parallel hierarchy of files).

-m, --prune-empty-dirs
This option tells the receiving rsync to get rid of empty directories from
the file-list, including nested directories that have no non-directory
children. This is useful for avoiding the creation of a bunch of useless
directories when the sending rsync is recursively scanning a hierarchy of
files using include/exclude/filter rules.

Note that the use of transfer rules, such as the --min-size option, does
not affect what goes into the file list, and thus does not leave directories
empty, even if none of the files in a directory match the transfer rule.

Because the file-list is actually being pruned, this option also affects what
directories get deleted when a delete is active. However, keep in mind
that excluded files and directories can prevent existing items from being
deleted due to an exclude both hiding source files and protecting
destination files. See the perishable filter-rule option for how to avoid this.

You can prevent the pruning of certain empty directories from the file-list
by using a global "protect" filter. For instance, this option would ensure
that the directory "emptydir" was kept in the file-list:

--filter 'protect emptydir/'

Here's an example that copies all .pdf files in a hierarchy, only creating
the necessary destination directories to hold the .pdf files, and ensures
that any superfluous files and directories in the destination are removed
(note the hide filter of non-directories being used instead of an exclude):

rsync -avm --del --include='*.pdf' -f 'hide,! */' src/ dest

If you didn't want to remove superfluous destination files, the more
time-honored options of "--include='*/' --exclude='*'" would work fine in
place of the hide-filter (if that is more natural to you).

--progress
This option tells rsync to print information showing the progress of the
transfer. This gives a bored user something to watch. With a modern rsync
this is the same as specifying --info=flist2,name,progress, but any
user-supplied settings for those info flags takes precedence (e.g.

rsync http://rsync.samba.org/ftp/rsync/rsync.html

46 de 67 28/04/14 13:58

"--info=flist0 --progress").

While rsync is transferring a regular file, it updates a progress line that
looks like this:

 782448 63% 110.64kB/s 0:00:04

In this example, the receiver has reconstructed 782448 bytes or 63% of
the sender's file, which is being reconstructed at a rate of 110.64
kilobytes per second, and the transfer will finish in 4 seconds if the
current rate is maintained until the end.

These statistics can be misleading if rsync's delta-transfer algorithm is in
use. For example, if the sender's file consists of the basis file followed by
additional data, the reported rate will probably drop dramatically when
the receiver gets to the literal data, and the transfer will probably take
much longer to finish than the receiver estimated as it was finishing the
matched part of the file.

When the file transfer finishes, rsync replaces the progress line with a
summary line that looks like this:

 1,238,099 100% 146.38kB/s 0:00:08 (xfr#5, to-chk=169/396)

In this example, the file was 1,238,099 bytes long in total, the average
rate of transfer for the whole file was 146.38 kilobytes per second over
the 8 seconds that it took to complete, it was the 5th transfer of a regular
file during the current rsync session, and there are 169 more files for the
receiver to check (to see if they are up-to-date or not) remaining out of the
396 total files in the file-list.

In an incremental recursion scan, rsync won't know the total number of
files in the file-list until it reaches the ends of the scan, but since it starts
to transfer files during the scan, it will display a line with the text "ir-chk"
(for incremental recursion check) instead of "to-chk" until the point that it
knows the full size of the list, at which point it will switch to using
"to-chk". Thus, seeing "ir-chk" lets you know that the total count of files in
the file list is still going to increase (and each time it does, the count of
files left to check will increase by the number of the files added to the
list).

-P
The -P option is equivalent to --partial --progress. Its purpose is to make
it much easier to specify these two options for a long transfer that may be
interrupted.

There is also a --info=progress2 option that outputs statistics based on
the whole transfer, rather than individual files. Use this flag without
outputting a filename (e.g. avoid -v or specify --info=name0 if you want
to see how the transfer is doing without scrolling the screen with a lot of
names. (You don't need to specify the --progress option in order to use
--info=progress2.)

rsync http://rsync.samba.org/ftp/rsync/rsync.html

47 de 67 28/04/14 13:58

--password-file=FILE
This option allows you to provide a password for accessing an rsync
daemon via a file or via standard input if FILE is -. The file should contain
just the password on the first line (all other lines are ignored). Rsync will
exit with an error if FILE is world readable or if a root-run rsync
command finds a non-root-owned file.

This option does not supply a password to a remote shell transport such
as ssh; to learn how to do that, consult the remote shell's documentation.
When accessing an rsync daemon using a remote shell as the transport,
this option only comes into effect after the remote shell finishes its
authentication (i.e. if you have also specified a password in the daemon's
config file).

--list-only
This option will cause the source files to be listed instead of transferred.
This option is inferred if there is a single source arg and no destination
specified, so its main uses are: (1) to turn a copy command that includes a
destination arg into a file-listing command, or (2) to be able to specify
more than one source arg (note: be sure to include the destination).
Caution: keep in mind that a source arg with a wild-card is expanded by
the shell into multiple args, so it is never safe to try to list such an arg
without using this option. For example:

 rsync -av --list-only foo* dest/

Starting with rsync 3.1.0, the sizes output by --list-only are affected by
the --human-readable option. By default they will contain digit
separators, but higher levels of readability will output the sizes with unit
suffixes. Note also that the column width for the size output has increased
from 11 to 14 characters for all human-readable levels. Use --no-h if you
want just digits in the sizes, and the old column width of 11 characters.

Compatibility note: when requesting a remote listing of files from an rsync
that is version 2.6.3 or older, you may encounter an error if you ask for a
non-recursive listing. This is because a file listing implies the --dirs option
w/o --recursive, and older rsyncs don't have that option. To avoid this
problem, either specify the --no-dirs option (if you don't need to expand a
directory's content), or turn on recursion and exclude the content of
subdirectories: -r --exclude='/*/*'.

--bwlimit=RATE
This option allows you to specify the maximum transfer rate for the data
sent over the socket, specified in units per second. The RATE value can be
suffixed with a string to indicate a size multiplier, and may be a fractional
value (e.g. "--bwlimit=1.5m"). If no suffix is specified, the value will be
assumed to be in units of 1024 bytes (as if "K" or "KiB" had been
appended). See the --max-size option for a description of all the available
suffixes. A value of zero specifies no limit.

For backward-compatibility reasons, the rate limit will be rounded to the

rsync http://rsync.samba.org/ftp/rsync/rsync.html

48 de 67 28/04/14 13:58

nearest KiB unit, so no rate smaller than 1024 bytes per second is
possible.

Rsync writes data over the socket in blocks, and this option both limits the
size of the blocks that rsync writes, and tries to keep the average transfer
rate at the requested limit. Some "burstiness" may be seen where rsync
writes out a block of data and then sleeps to bring the average rate into
compliance.

Due to the internal buffering of data, the --progress option may not be an
accurate reflection on how fast the data is being sent. This is because
some files can show up as being rapidly sent when the data is quickly
buffered, while other can show up as very slow when the flushing of the
output buffer occurs. This may be fixed in a future version.

--write-batch=FILE
Record a file that can later be applied to another identical destination
with --read-batch. See the "BATCH MODE" section for details, and also
the --only-write-batch option.

--only-write-batch=FILE
Works like --write-batch, except that no updates are made on the
destination system when creating the batch. This lets you transport the
changes to the destination system via some other means and then apply
the changes via --read-batch.

Note that you can feel free to write the batch directly to some portable
media: if this media fills to capacity before the end of the transfer, you can
just apply that partial transfer to the destination and repeat the whole
process to get the rest of the changes (as long as you don't mind a
partially updated destination system while the multi-update cycle is
happening).

Also note that you only save bandwidth when pushing changes to a remote
system because this allows the batched data to be diverted from the
sender into the batch file without having to flow over the wire to the
receiver (when pulling, the sender is remote, and thus can't write the
batch).

--read-batch=FILE
Apply all of the changes stored in FILE, a file previously generated by
--write-batch. If FILE is -, the batch data will be read from standard
input. See the "BATCH MODE" section for details.

--protocol=NUM
Force an older protocol version to be used. This is useful for creating a
batch file that is compatible with an older version of rsync. For instance, if
rsync 2.6.4 is being used with the --write-batch option, but rsync 2.6.3 is
what will be used to run the --read-batch option, you should use
"--protocol=28" when creating the batch file to force the older protocol
version to be used in the batch file (assuming you can't upgrade the rsync

rsync http://rsync.samba.org/ftp/rsync/rsync.html

49 de 67 28/04/14 13:58

on the reading system).

--iconv=CONVERT_SPEC
Rsync can convert filenames between character sets using this option.
Using a CONVERT_SPEC of "." tells rsync to look up the default
character-set via the locale setting. Alternately, you can fully specify what
conversion to do by giving a local and a remote charset separated by a
comma in the order --iconv=LOCAL,REMOTE, e.g.
--iconv=utf8,iso88591. This order ensures that the option will stay the
same whether you're pushing or pulling files. Finally, you can specify
either --no-iconv or a CONVERT_SPEC of "-" to turn off any conversion.
The default setting of this option is site-specific, and can also be affected
via the RSYNC_ICONV environment variable.

For a list of what charset names your local iconv library supports, you can
run "iconv --list".

If you specify the --protect-args option (-s), rsync will translate the
filenames you specify on the command-line that are being sent to the
remote host. See also the --files-from option.

Note that rsync does not do any conversion of names in filter files
(including include/exclude files). It is up to you to ensure that you're
specifying matching rules that can match on both sides of the transfer. For
instance, you can specify extra include/exclude rules if there are filename
differences on the two sides that need to be accounted for.

When you pass an --iconv option to an rsync daemon that allows it, the
daemon uses the charset specified in its "charset" configuration
parameter regardless of the remote charset you actually pass. Thus, you
may feel free to specify just the local charset for a daemon transfer (e.g.
--iconv=utf8).

-4, --ipv4 or -6, --ipv6
Tells rsync to prefer IPv4/IPv6 when creating sockets. This only affects
sockets that rsync has direct control over, such as the outgoing socket
when directly contacting an rsync daemon. See also these options in the
--daemon mode section.

If rsync was complied without support for IPv6, the --ipv6 option will have
no effect. The --version output will tell you if this is the case.

--checksum-seed=NUM
Set the checksum seed to the integer NUM. This 4 byte checksum seed is
included in each block and MD4 file checksum calculation (the more
modern MD5 file checksums don't use a seed). By default the checksum
seed is generated by the server and defaults to the current time() . This
option is used to set a specific checksum seed, which is useful for
applications that want repeatable block checksums, or in the case where
the user wants a more random checksum seed. Setting NUM to 0 causes
rsync to use the default of time() for checksum seed.

rsync http://rsync.samba.org/ftp/rsync/rsync.html

50 de 67 28/04/14 13:58

DAEMON OPTIONS

The options allowed when starting an rsync daemon are as follows:

--daemon
This tells rsync that it is to run as a daemon. The daemon you start
running may be accessed using an rsync client using the host::module or
rsync://host/module/ syntax.

If standard input is a socket then rsync will assume that it is being run via
inetd, otherwise it will detach from the current terminal and become a
background daemon. The daemon will read the config file (rsyncd.conf) on
each connect made by a client and respond to requests accordingly. See
the rsyncd.conf(5) man page for more details.

--address
By default rsync will bind to the wildcard address when run as a daemon
with the --daemon option. The --address option allows you to specify a
specific IP address (or hostname) to bind to. This makes virtual hosting
possible in conjunction with the --config option. See also the "address"
global option in the rsyncd.conf manpage.

--bwlimit=RATE
This option allows you to specify the maximum transfer rate for the data
the daemon sends over the socket. The client can still specify a smaller
--bwlimit value, but no larger value will be allowed. See the client version
of this option (above) for some extra details.

--config=FILE
This specifies an alternate config file than the default. This is only relevant
when --daemon is specified. The default is /etc/rsyncd.conf unless the
daemon is running over a remote shell program and the remote user is
not the super-user; in that case the default is rsyncd.conf in the current
directory (typically $HOME).

-M, --dparam=OVERRIDE
This option can be used to set a daemon-config parameter when starting
up rsync in daemon mode. It is equivalent to adding the parameter at the
end of the global settings prior to the first module's definition. The
parameter names can be specified without spaces, if you so desire. For
instance:

 rsync --daemon -M pidfile=/path/rsync.pid

--no-detach
When running as a daemon, this option instructs rsync to not detach itself
and become a background process. This option is required when running
as a service on Cygwin, and may also be useful when rsync is supervised
by a program such as daemontools or AIX's System Resource
Controller. --no-detach is also recommended when rsync is run under a

rsync http://rsync.samba.org/ftp/rsync/rsync.html

51 de 67 28/04/14 13:58

debugger. This option has no effect if rsync is run from inetd or sshd.

--port=PORT
This specifies an alternate TCP port number for the daemon to listen on
rather than the default of 873. See also the "port" global option in the
rsyncd.conf manpage.

--log-file=FILE
This option tells the rsync daemon to use the given log-file name instead
of using the "log file" setting in the config file.

--log-file-format=FORMAT
This option tells the rsync daemon to use the given FORMAT string
instead of using the "log format" setting in the config file. It also enables
"transfer logging" unless the string is empty, in which case transfer
logging is turned off.

--sockopts
This overrides the socket options setting in the rsyncd.conf file and has
the same syntax.

-v, --verbose
This option increases the amount of information the daemon logs during
its startup phase. After the client connects, the daemon's verbosity level
will be controlled by the options that the client used and the "max
verbosity" setting in the module's config section.

-4, --ipv4 or -6, --ipv6
Tells rsync to prefer IPv4/IPv6 when creating the incoming sockets that
the rsync daemon will use to listen for connections. One of these options
may be required in older versions of Linux to work around an IPv6 bug in
the kernel (if you see an "address already in use" error when nothing else
is using the port, try specifying --ipv6 or --ipv4 when starting the
daemon).

If rsync was complied without support for IPv6, the --ipv6 option will have
no effect. The --version output will tell you if this is the case.

-h, --help
When specified after --daemon, print a short help page describing the
options available for starting an rsync daemon.

FILTER RULES

The filter rules allow for flexible selection of which files to transfer (include)
and which files to skip (exclude). The rules either directly specify
include/exclude patterns or they specify a way to acquire more include/exclude
patterns (e.g. to read them from a file).

As the list of files/directories to transfer is built, rsync checks each name to be

rsync http://rsync.samba.org/ftp/rsync/rsync.html

52 de 67 28/04/14 13:58

transferred against the list of include/exclude patterns in turn, and the first
matching pattern is acted on: if it is an exclude pattern, then that file is
skipped; if it is an include pattern then that filename is not skipped; if no
matching pattern is found, then the filename is not skipped.

Rsync builds an ordered list of filter rules as specified on the command-line.
Filter rules have the following syntax:

RULE [PATTERN_OR_FILENAME]
RULE,MODIFIERS [PATTERN_OR_FILENAME]

You have your choice of using either short or long RULE names, as described
below. If you use a short-named rule, the ',' separating the RULE from the
MODIFIERS is optional. The PATTERN or FILENAME that follows (when
present) must come after either a single space or an underscore (_). Here are
the available rule prefixes:

exclude, - specifies an exclude pattern.
include, + specifies an include pattern.
merge, . specifies a merge-file to read for more rules.
dir-merge, : specifies a per-directory merge-file.
hide, H specifies a pattern for hiding files from the transfer.
show, S files that match the pattern are not hidden.
protect, P specifies a pattern for protecting files from deletion.
risk, R files that match the pattern are not protected.
clear, ! clears the current include/exclude list (takes no arg)

When rules are being read from a file, empty lines are ignored, as are comment
lines that start with a "#".

Note that the --include/--exclude command-line options do not allow the full
range of rule parsing as described above -- they only allow the specification of
include/exclude patterns plus a "!" token to clear the list (and the normal
comment parsing when rules are read from a file). If a pattern does not begin
with "- " (dash, space) or "+ " (plus, space), then the rule will be interpreted as
if "+ " (for an include option) or "- " (for an exclude option) were prefixed to the
string. A --filter option, on the other hand, must always contain either a short
or long rule name at the start of the rule.

Note also that the --filter, --include, and --exclude options take one
rule/pattern each. To add multiple ones, you can repeat the options on the
command-line, use the merge-file syntax of the --filter option, or the
--include-from/--exclude-from options.

INCLUDE/EXCLUDE PATTERN RULES

You can include and exclude files by specifying patterns using the "+", "-", etc.
filter rules (as introduced in the FILTER RULES section above). The
include/exclude rules each specify a pattern that is matched against the names
of the files that are going to be transferred. These patterns can take several

rsync http://rsync.samba.org/ftp/rsync/rsync.html

53 de 67 28/04/14 13:58

forms:

if the pattern starts with a / then it is anchored to a particular spot in the
hierarchy of files, otherwise it is matched against the end of the
pathname. This is similar to a leading ^ in regular expressions. Thus
"/foo" would match a name of "foo" at either the "root of the transfer" (for
a global rule) or in the merge-file's directory (for a per-directory rule). An
unqualified "foo" would match a name of "foo" anywhere in the tree
because the algorithm is applied recursively from the top down; it
behaves as if each path component gets a turn at being the end of the
filename. Even the unanchored "sub/foo" would match at any point in the
hierarchy where a "foo" was found within a directory named "sub". See
the section on ANCHORING INCLUDE/EXCLUDE PATTERNS for a full
discussion of how to specify a pattern that matches at the root of the
transfer.
if the pattern ends with a / then it will only match a directory, not a
regular file, symlink, or device.
rsync chooses between doing a simple string match and wildcard
matching by checking if the pattern contains one of these three wildcard
characters: '*', '?', and '[' .
a '*' matches any path component, but it stops at slashes.
use '**' to match anything, including slashes.
a '?' matches any character except a slash (/).
a '[' introduces a character class, such as [a-z] or [[:alpha:]].
in a wildcard pattern, a backslash can be used to escape a wildcard
character, but it is matched literally when no wildcards are present.
if the pattern contains a / (not counting a trailing /) or a "**", then it is
matched against the full pathname, including any leading directories. If
the pattern doesn't contain a / or a "**", then it is matched only against
the final component of the filename. (Remember that the algorithm is
applied recursively so "full filename" can actually be any portion of a path
from the starting directory on down.)
a trailing "dir_name/***" will match both the directory (as if "dir_name/"
had been specified) and everything in the directory (as if "dir_name/**"
had been specified). This behavior was added in version 2.6.7.

Note that, when using the --recursive (-r) option (which is implied by -a),
every subcomponent of every path is visited from the top down, so
include/exclude patterns get applied recursively to each subcomponent's full
name (e.g. to include "/foo/bar/baz" the subcomponents "/foo" and "/foo/bar"
must not be excluded). The exclude patterns actually short-circuit the directory
traversal stage when rsync finds the files to send. If a pattern excludes a
particular parent directory, it can render a deeper include pattern ineffectual
because rsync did not descend through that excluded section of the hierarchy.
This is particularly important when using a trailing '*' rule. For instance, this
won't work:

+ /some/path/this-file-will-not-be-found
+ /file-is-included
- *

rsync http://rsync.samba.org/ftp/rsync/rsync.html

54 de 67 28/04/14 13:58

This fails because the parent directory "some" is excluded by the '*' rule, so
rsync never visits any of the files in the "some" or "some/path" directories. One
solution is to ask for all directories in the hierarchy to be included by using a
single rule: "+ */" (put it somewhere before the "- *" rule), and perhaps use the
--prune-empty-dirs option. Another solution is to add specific include rules
for all the parent dirs that need to be visited. For instance, this set of rules
works fine:

+ /some/
+ /some/path/
+ /some/path/this-file-is-found
+ /file-also-included
- *

Here are some examples of exclude/include matching:

"- *.o" would exclude all names matching *.o
"- /foo" would exclude a file (or directory) named foo in the transfer-root
directory
"- foo/" would exclude any directory named foo
"- /foo/*/bar" would exclude any file named bar which is at two levels
below a directory named foo in the transfer-root directory
"- /foo/**/bar" would exclude any file named bar two or more levels below
a directory named foo in the transfer-root directory
The combination of "+ */", "+ *.c", and "- *" would include all directories
and C source files but nothing else (see also the --prune-empty-dirs
option)
The combination of "+ foo/", "+ foo/bar.c", and "- *" would include only the
foo directory and foo/bar.c (the foo directory must be explicitly included or
it would be excluded by the "*")

The following modifiers are accepted after a "+" or "-":

A / specifies that the include/exclude rule should be matched against the
absolute pathname of the current item. For example, "-/ /etc/passwd"
would exclude the passwd file any time the transfer was sending files from
the "/etc" directory, and "-/ subdir/foo" would always exclude "foo" when it
is in a dir named "subdir", even if "foo" is at the root of the current
transfer.
A ! specifies that the include/exclude should take effect if the pattern fails
to match. For instance, "-! */" would exclude all non-directories.
A C is used to indicate that all the global CVS-exclude rules should be
inserted as excludes in place of the "-C". No arg should follow.
An s is used to indicate that the rule applies to the sending side. When a
rule affects the sending side, it prevents files from being transferred. The
default is for a rule to affect both sides unless --delete-excluded was
specified, in which case default rules become sender-side only. See also
the hide (H) and show (S) rules, which are an alternate way to specify
sending-side includes/excludes.
An r is used to indicate that the rule applies to the receiving side. When a
rule affects the receiving side, it prevents files from being deleted. See the

rsync http://rsync.samba.org/ftp/rsync/rsync.html

55 de 67 28/04/14 13:58

s modifier for more info. See also the protect (P) and risk (R) rules, which
are an alternate way to specify receiver-side includes/excludes.
A p indicates that a rule is perishable, meaning that it is ignored in
directories that are being deleted. For instance, the -C option's default
rules that exclude things like "CVS" and "*.o" are marked as perishable,
and will not prevent a directory that was removed on the source from
being deleted on the destination.

MERGE-FILE FILTER RULES

You can merge whole files into your filter rules by specifying either a merge (.)
or a dir-merge (:) filter rule (as introduced in the FILTER RULES section
above).

There are two kinds of merged files -- single-instance ('.') and per-directory (':').
A single-instance merge file is read one time, and its rules are incorporated
into the filter list in the place of the "." rule. For per-directory merge files,
rsync will scan every directory that it traverses for the named file, merging its
contents when the file exists into the current list of inherited rules. These
per-directory rule files must be created on the sending side because it is the
sending side that is being scanned for the available files to transfer. These rule
files may also need to be transferred to the receiving side if you want them to
affect what files don't get deleted (see PER-DIRECTORY RULES AND DELETE
below).

Some examples:

merge /etc/rsync/default.rules
. /etc/rsync/default.rules
dir-merge .per-dir-filter
dir-merge,n- .non-inherited-per-dir-excludes
:n- .non-inherited-per-dir-excludes

The following modifiers are accepted after a merge or dir-merge rule:

A - specifies that the file should consist of only exclude patterns, with no
other rule-parsing except for in-file comments.
A + specifies that the file should consist of only include patterns, with no
other rule-parsing except for in-file comments.
A C is a way to specify that the file should be read in a CVS-compatible
manner. This turns on 'n', 'w', and '-', but also allows the list-clearing
token (!) to be specified. If no filename is provided, ".cvsignore" is
assumed.
A e will exclude the merge-file name from the transfer; e.g. "dir-merge,e
.rules" is like "dir-merge .rules" and "- .rules".
An n specifies that the rules are not inherited by subdirectories.
A w specifies that the rules are word-split on whitespace instead of the
normal line-splitting. This also turns off comments. Note: the space that
separates the prefix from the rule is treated specially, so "- foo + bar" is
parsed as two rules (assuming that prefix-parsing wasn't also disabled).
You may also specify any of the modifiers for the "+" or "-" rules (above) in

rsync http://rsync.samba.org/ftp/rsync/rsync.html

56 de 67 28/04/14 13:58

order to have the rules that are read in from the file default to having that
modifier set (except for the ! modifier, which would not be useful). For
instance, "merge,-/ .excl" would treat the contents of .excl as
absolute-path excludes, while "dir-merge,s .filt" and ":sC" would each
make all their per-directory rules apply only on the sending side. If the
merge rule specifies sides to affect (via the s or r modifier or both), then
the rules in the file must not specify sides (via a modifier or a rule prefix
such as hide).

Per-directory rules are inherited in all subdirectories of the directory where
the merge-file was found unless the 'n' modifier was used. Each subdirectory's
rules are prefixed to the inherited per-directory rules from its parents, which
gives the newest rules a higher priority than the inherited rules. The entire set
of dir-merge rules are grouped together in the spot where the merge-file was
specified, so it is possible to override dir-merge rules via a rule that got
specified earlier in the list of global rules. When the list-clearing rule ("!") is
read from a per-directory file, it only clears the inherited rules for the current
merge file.

Another way to prevent a single rule from a dir-merge file from being inherited
is to anchor it with a leading slash. Anchored rules in a per-directory merge-file
are relative to the merge-file's directory, so a pattern "/foo" would only match
the file "foo" in the directory where the dir-merge filter file was found.

Here's an example filter file which you'd specify via --filter=". file":

merge /home/user/.global-filter
- *.gz
dir-merge .rules
+ *.[ch]
- *.o

This will merge the contents of the /home/user/.global-filter file at the start of
the list and also turns the ".rules" filename into a per-directory filter file. All
rules read in prior to the start of the directory scan follow the global anchoring
rules (i.e. a leading slash matches at the root of the transfer).

If a per-directory merge-file is specified with a path that is a parent directory
of the first transfer directory, rsync will scan all the parent dirs from that
starting point to the transfer directory for the indicated per-directory file. For
instance, here is a common filter (see -F):

--filter=': /.rsync-filter'

That rule tells rsync to scan for the file .rsync-filter in all directories from the
root down through the parent directory of the transfer prior to the start of the
normal directory scan of the file in the directories that are sent as a part of the
transfer. (Note: for an rsync daemon, the root is always the same as the
module's "path".)

Some examples of this pre-scanning for per-directory files:

rsync -avF /src/path/ /dest/dir

rsync http://rsync.samba.org/ftp/rsync/rsync.html

57 de 67 28/04/14 13:58

rsync -av --filter=': ../../.rsync-filter' /src/path/ /dest/dir
rsync -av --filter=': .rsync-filter' /src/path/ /dest/dir

The first two commands above will look for ".rsync-filter" in "/" and "/src"
before the normal scan begins looking for the file in "/src/path" and its
subdirectories. The last command avoids the parent-dir scan and only looks for
the ".rsync-filter" files in each directory that is a part of the transfer.

If you want to include the contents of a ".cvsignore" in your patterns, you
should use the rule ":C", which creates a dir-merge of the .cvsignore file, but
parsed in a CVS-compatible manner. You can use this to affect where the --cvs-
exclude (-C) option's inclusion of the per-directory .cvsignore file gets placed
into your rules by putting the ":C" wherever you like in your filter rules.
Without this, rsync would add the dir-merge rule for the .cvsignore file at the
end of all your other rules (giving it a lower priority than your command-line
rules). For example:

cat <<EOT | rsync -avC --filter='. -' a/ b
+ foo.o
:C
- *.old
EOT
rsync -avC --include=foo.o -f :C --exclude='*.old' a/ b

Both of the above rsync commands are identical. Each one will merge all the
per-directory .cvsignore rules in the middle of the list rather than at the end.
This allows their dir-specific rules to supersede the rules that follow the :C
instead of being subservient to all your rules. To affect the other CVS exclude
rules (i.e. the default list of exclusions, the contents of $HOME/.cvsignore, and
the value of $CVSIGNORE) you should omit the -C command-line option and
instead insert a "-C" rule into your filter rules; e.g. "--filter=-C".

LIST-CLEARING FILTER RULE

You can clear the current include/exclude list by using the "!" filter rule (as
introduced in the FILTER RULES section above). The "current" list is either the
global list of rules (if the rule is encountered while parsing the filter options) or
a set of per-directory rules (which are inherited in their own sub-list, so a
subdirectory can use this to clear out the parent's rules).

ANCHORING INCLUDE/EXCLUDE PATTERNS

As mentioned earlier, global include/exclude patterns are anchored at the "root
of the transfer" (as opposed to per-directory patterns, which are anchored at
the merge-file's directory). If you think of the transfer as a subtree of names
that are being sent from sender to receiver, the transfer-root is where the tree
starts to be duplicated in the destination directory. This root governs where
patterns that start with a / match.

Because the matching is relative to the transfer-root, changing the trailing
slash on a source path or changing your use of the --relative option affects the

rsync http://rsync.samba.org/ftp/rsync/rsync.html

58 de 67 28/04/14 13:58

path you need to use in your matching (in addition to changing how much of
the file tree is duplicated on the destination host). The following examples
demonstrate this.

Let's say that we want to match two source files, one with an absolute path of
"/home/me/foo/bar", and one with a path of "/home/you/bar/baz". Here is how
the various command choices differ for a 2-source transfer:

Example cmd: rsync -a /home/me /home/you /dest
+/- pattern: /me/foo/bar
+/- pattern: /you/bar/baz
Target file: /dest/me/foo/bar
Target file: /dest/you/bar/baz

Example cmd: rsync -a /home/me/ /home/you/ /dest
+/- pattern: /foo/bar (note missing "me")
+/- pattern: /bar/baz (note missing "you")
Target file: /dest/foo/bar
Target file: /dest/bar/baz

Example cmd: rsync -a --relative /home/me/ /home/you /dest
+/- pattern: /home/me/foo/bar (note full path)
+/- pattern: /home/you/bar/baz (ditto)
Target file: /dest/home/me/foo/bar
Target file: /dest/home/you/bar/baz

Example cmd: cd /home; rsync -a --relative me/foo you/ /dest
+/- pattern: /me/foo/bar (starts at specified path)
+/- pattern: /you/bar/baz (ditto)
Target file: /dest/me/foo/bar
Target file: /dest/you/bar/baz

The easiest way to see what name you should filter is to just look at the output
when using --verbose and put a / in front of the name (use the --dry-run
option if you're not yet ready to copy any files).

PER-DIRECTORY RULES AND DELETE

Without a delete option, per-directory rules are only relevant on the sending
side, so you can feel free to exclude the merge files themselves without
affecting the transfer. To make this easy, the 'e' modifier adds this exclude for
you, as seen in these two equivalent commands:

rsync -av --filter=': .excl' --exclude=.excl host:src/dir /dest
rsync -av --filter=':e .excl' host:src/dir /dest

However, if you want to do a delete on the receiving side AND you want some
files to be excluded from being deleted, you'll need to be sure that the
receiving side knows what files to exclude. The easiest way is to include the
per-directory merge files in the transfer and use --delete-after, because this
ensures that the receiving side gets all the same exclude rules as the sending

rsync http://rsync.samba.org/ftp/rsync/rsync.html

59 de 67 28/04/14 13:58

side before it tries to delete anything:

rsync -avF --delete-after host:src/dir /dest

However, if the merge files are not a part of the transfer, you'll need to either
specify some global exclude rules (i.e. specified on the command line), or you'll
need to maintain your own per-directory merge files on the receiving side. An
example of the first is this (assume that the remote .rules files exclude
themselves):

rsync -av --filter=': .rules' --filter='. /my/extra.rules'
 --delete host:src/dir /dest

In the above example the extra.rules file can affect both sides of the transfer,
but (on the sending side) the rules are subservient to the rules merged from
the .rules files because they were specified after the per-directory merge rule.

In one final example, the remote side is excluding the .rsync-filter files from the
transfer, but we want to use our own .rsync-filter files to control what gets
deleted on the receiving side. To do this we must specifically exclude the
per-directory merge files (so that they don't get deleted) and then put rules
into the local files to control what else should not get deleted. Like one of these
commands:

 rsync -av --filter=':e /.rsync-filter' --delete \
 host:src/dir /dest
 rsync -avFF --delete host:src/dir /dest

BATCH MODE

Batch mode can be used to apply the same set of updates to many identical
systems. Suppose one has a tree which is replicated on a number of hosts. Now
suppose some changes have been made to this source tree and those changes
need to be propagated to the other hosts. In order to do this using batch mode,
rsync is run with the write-batch option to apply the changes made to the
source tree to one of the destination trees. The write-batch option causes the
rsync client to store in a "batch file" all the information needed to repeat this
operation against other, identical destination trees.

Generating the batch file once saves having to perform the file status,
checksum, and data block generation more than once when updating multiple
destination trees. Multicast transport protocols can be used to transfer the
batch update files in parallel to many hosts at once, instead of sending the
same data to every host individually.

To apply the recorded changes to another destination tree, run rsync with the
read-batch option, specifying the name of the same batch file, and the
destination tree. Rsync updates the destination tree using the information
stored in the batch file.

For your convenience, a script file is also created when the write-batch option
is used: it will be named the same as the batch file with ".sh" appended. This

rsync http://rsync.samba.org/ftp/rsync/rsync.html

60 de 67 28/04/14 13:58

script file contains a command-line suitable for updating a destination tree
using the associated batch file. It can be executed using a Bourne (or
Bourne-like) shell, optionally passing in an alternate destination tree pathname
which is then used instead of the original destination path. This is useful when
the destination tree path on the current host differs from the one used to
create the batch file.

Examples:

$ rsync --write-batch=foo -a host:/source/dir/ /adest/dir/
$ scp foo* remote:
$ ssh remote ./foo.sh /bdest/dir/

$ rsync --write-batch=foo -a /source/dir/ /adest/dir/
$ ssh remote rsync --read-batch=- -a /bdest/dir/ <foo

In these examples, rsync is used to update /adest/dir/ from /source/dir/ and the
information to repeat this operation is stored in "foo" and "foo.sh". The host
"remote" is then updated with the batched data going into the directory
/bdest/dir. The differences between the two examples reveals some of the
flexibility you have in how you deal with batches:

The first example shows that the initial copy doesn't have to be local -- you
can push or pull data to/from a remote host using either the remote-shell
syntax or rsync daemon syntax, as desired.
The first example uses the created "foo.sh" file to get the right rsync
options when running the read-batch command on the remote host.
The second example reads the batch data via standard input so that the
batch file doesn't need to be copied to the remote machine first. This
example avoids the foo.sh script because it needed to use a modified
--read-batch option, but you could edit the script file if you wished to
make use of it (just be sure that no other option is trying to use standard
input, such as the "--exclude-from=-" option).

Caveats:

The read-batch option expects the destination tree that it is updating to be
identical to the destination tree that was used to create the batch update
fileset. When a difference between the destination trees is encountered the
update might be discarded with a warning (if the file appears to be up-to-date
already) or the file-update may be attempted and then, if the file fails to verify,
the update discarded with an error. This means that it should be safe to re-run
a read-batch operation if the command got interrupted. If you wish to force the
batched-update to always be attempted regardless of the file's size and date,
use the -I option (when reading the batch). If an error occurs, the destination
tree will probably be in a partially updated state. In that case, rsync can be
used in its regular (non-batch) mode of operation to fix up the destination tree.

The rsync version used on all destinations must be at least as new as the one
used to generate the batch file. Rsync will die with an error if the protocol
version in the batch file is too new for the batch-reading rsync to handle. See
also the --protocol option for a way to have the creating rsync generate a

rsync http://rsync.samba.org/ftp/rsync/rsync.html

61 de 67 28/04/14 13:58

batch file that an older rsync can understand. (Note that batch files changed
format in version 2.6.3, so mixing versions older than that with newer versions
will not work.)

When reading a batch file, rsync will force the value of certain options to
match the data in the batch file if you didn't set them to the same as the batch-
writing command. Other options can (and should) be changed. For instance
--write-batch changes to --read-batch, --files-from is dropped, and the
--filter/--include/--exclude options are not needed unless one of the --delete
options is specified.

The code that creates the BATCH.sh file transforms any filter/include/exclude
options into a single list that is appended as a "here" document to the shell
script file. An advanced user can use this to modify the exclude list if a change
in what gets deleted by --delete is desired. A normal user can ignore this
detail and just use the shell script as an easy way to run the appropriate
--read-batch command for the batched data.

The original batch mode in rsync was based on "rsync+", but the latest version
uses a new implementation.

SYMBOLIC LINKS

Three basic behaviors are possible when rsync encounters a symbolic link in
the source directory.

By default, symbolic links are not transferred at all. A message "skipping
non-regular" file is emitted for any symlinks that exist.

If --links is specified, then symlinks are recreated with the same target on the
destination. Note that --archive implies --links.

If --copy-links is specified, then symlinks are "collapsed" by copying their
referent, rather than the symlink.

Rsync can also distinguish "safe" and "unsafe" symbolic links. An example
where this might be used is a web site mirror that wishes to ensure that the
rsync module that is copied does not include symbolic links to /etc/passwd in
the public section of the site. Using --copy-unsafe-links will cause any links
to be copied as the file they point to on the destination. Using --safe-links will
cause unsafe links to be omitted altogether. (Note that you must specify --links
for --safe-links to have any effect.)

Symbolic links are considered unsafe if they are absolute symlinks (start with
/), empty, or if they contain enough ".." components to ascend from the
directory being copied.

Here's a summary of how the symlink options are interpreted. The list is in
order of precedence, so if your combination of options isn't mentioned, use the
first line that is a complete subset of your options:

rsync http://rsync.samba.org/ftp/rsync/rsync.html

62 de 67 28/04/14 13:58

--copy-links
 Turn all symlinks into normal files (leaving no symlinks for any other

options to affect).

--links --copy-unsafe-links
 Turn all unsafe symlinks into files and duplicate all safe symlinks.

--copy-unsafe-links
 Turn all unsafe symlinks into files, noisily skip all safe symlinks.

--links --safe-links
 Duplicate safe symlinks and skip unsafe ones.

--links
 Duplicate all symlinks.

DIAGNOSTICS

rsync occasionally produces error messages that may seem a little cryptic. The
one that seems to cause the most confusion is "protocol version mismatch -- is
your shell clean?".

This message is usually caused by your startup scripts or remote shell facility
producing unwanted garbage on the stream that rsync is using for its
transport. The way to diagnose this problem is to run your remote shell like
this:

ssh remotehost /bin/true > out.dat

then look at out.dat. If everything is working correctly then out.dat should be a
zero length file. If you are getting the above error from rsync then you will
probably find that out.dat contains some text or data. Look at the contents and
try to work out what is producing it. The most common cause is incorrectly
configured shell startup scripts (such as .cshrc or .profile) that contain output
statements for non-interactive logins.

If you are having trouble debugging filter patterns, then try specifying the -vv
option. At this level of verbosity rsync will show why each individual file is
included or excluded.

EXIT VALUES

0
Success

1
Syntax or usage error

2
Protocol incompatibility

rsync http://rsync.samba.org/ftp/rsync/rsync.html

63 de 67 28/04/14 13:58

3
Errors selecting input/output files, dirs

4
Requested action not supported: an attempt was made to manipulate
64-bit files on a platform that cannot support them; or an option was
specified that is supported by the client and not by the server.

5
Error starting client-server protocol

6
Daemon unable to append to log-file

10
Error in socket I/O

11
Error in file I/O

12
Error in rsync protocol data stream

13
Errors with program diagnostics

14
Error in IPC code

20
Received SIGUSR1 or SIGINT

21
Some error returned by waitpid()

22
Error allocating core memory buffers

23
Partial transfer due to error

24
Partial transfer due to vanished source files

25
The --max-delete limit stopped deletions

30
Timeout in data send/receive

35
Timeout waiting for daemon connection

rsync http://rsync.samba.org/ftp/rsync/rsync.html

64 de 67 28/04/14 13:58

ENVIRONMENT VARIABLES

CVSIGNORE
The CVSIGNORE environment variable supplements any ignore patterns
in .cvsignore files. See the --cvs-exclude option for more details.

RSYNC_ICONV
Specify a default --iconv setting using this environment variable. (First
supported in 3.0.0.)

RSYNC_PROTECT_ARGS
Specify a non-zero numeric value if you want the --protect-args option to
be enabled by default, or a zero value to make sure that it is disabled by
default. (First supported in 3.1.0.)

RSYNC_RSH
The RSYNC_RSH environment variable allows you to override the default
shell used as the transport for rsync. Command line options are permitted
after the command name, just as in the -e option.

RSYNC_PROXY
The RSYNC_PROXY environment variable allows you to redirect your
rsync client to use a web proxy when connecting to a rsync daemon. You
should set RSYNC_PROXY to a hostname:port pair.

RSYNC_PASSWORD
Setting RSYNC_PASSWORD to the required password allows you to run
authenticated rsync connections to an rsync daemon without user
intervention. Note that this does not supply a password to a remote shell
transport such as ssh; to learn how to do that, consult the remote shell's
documentation.

USER or LOGNAME
The USER or LOGNAME environment variables are used to determine the
default username sent to an rsync daemon. If neither is set, the username
defaults to "nobody".

HOME
The HOME environment variable is used to find the user's default
.cvsignore file.

FILES

/etc/rsyncd.conf or rsyncd.conf

SEE ALSO

rsyncd.conf(5)

rsync http://rsync.samba.org/ftp/rsync/rsync.html

65 de 67 28/04/14 13:58

BUGS

times are transferred as *nix time_t values

When transferring to FAT filesystems rsync may re-sync unmodified files. See
the comments on the --modify-window option.

file permissions, devices, etc. are transferred as native numerical values

see also the comments on the --delete option

Please report bugs! See the web site at http://rsync.samba.org/

VERSION

This man page is current for version 3.1.1pre1 of rsync.

INTERNAL OPTIONS

The options --server and --sender are used internally by rsync, and should
never be typed by a user under normal circumstances. Some awareness of
these options may be needed in certain scenarios, such as when setting up a
login that can only run an rsync command. For instance, the support directory
of the rsync distribution has an example script named rrsync (for restricted
rsync) that can be used with a restricted ssh login.

CREDITS

rsync is distributed under the GNU General Public License. See the file
COPYING for details.

A WEB site is available at http://rsync.samba.org/. The site includes an
FAQ-O-Matic which may cover questions unanswered by this manual page.

The primary ftp site for rsync is ftp://rsync.samba.org/pub/rsync.

We would be delighted to hear from you if you like this program. Please
contact the mailing-list at rsync@lists.samba.org.

This program uses the excellent zlib compression library written by Jean-loup
Gailly and Mark Adler.

THANKS

Special thanks go out to: John Van Essen, Matt McCutchen, Wesley W. Terpstra,
David Dykstra, Jos Backus, Sebastian Krahmer, Martin Pool, and our gone-but-
not-forgotten compadre, J.W. Schultz.

Thanks also to Richard Brent, Brendan Mackay, Bill Waite, Stephen Rothwell

rsync http://rsync.samba.org/ftp/rsync/rsync.html

66 de 67 28/04/14 13:58

and David Bell. I've probably missed some people, my apologies if I have.

AUTHOR

rsync was originally written by Andrew Tridgell and Paul Mackerras. Many
people have later contributed to it. It is currently maintained by Wayne
Davison.

Mailing lists for support and development are available at
http://lists.samba.org

rsync http://rsync.samba.org/ftp/rsync/rsync.html

67 de 67 28/04/14 13:58

