
Silberschatz, Galvin and Gagne 200217.1Operating System Concepts

Chapter 17 Distributed Coordination

� Event Ordering

� Mutual Exclusion

� Atomicity

� Concurrency Control
� Deadlock Handling

� Election Algorithms

� Reaching Agreement

Silberschatz, Galvin and Gagne 200217.2Operating System Concepts

Event Ordering

� Happened-before relation (denoted by →).
✦ If A and B are events in the same process, and A was

executed before B, then A → B.
✦ If A is the event of sending a message by one process and

B is the event of receiving that message by another
process, then A → B.

✦ If A → B and B → C then A → C.

Silberschatz, Galvin and Gagne 200217.3Operating System Concepts

Relative Time for Three Concurrent Processes

Silberschatz, Galvin and Gagne 200217.4Operating System Concepts

Implementation of →→→→

� Associate a timestamp with each system event. Require
that for every pair of events A and B, if A → B, then the
timestamp of A is less than the timestamp of B.

� Within each process Pi a logical clock, LCi is associated.
The logical clock can be implemented as a simple
counter that is incremented between any two successive
events executed within a process.

� A process advances its logical clock when it receives a
message whose timestamp is greater than the current
value of its logical clock.

� If the timestamps of two events A and B are the same,
then the events are concurrent. We may use the process
identity numbers to break ties and to create a total
ordering.

Silberschatz, Galvin and Gagne 200217.5Operating System Concepts

Distributed Mutual Exclusion (DME)

� Assumptions
✦ The system consists of n processes; each process Pi

resides at a different processor.

✦ Each process has a critical section that requires mutual
exclusion.

� Requirement
✦ If Pi is executing in its critical section, then no other process

Pj is executing in its critical section.

� We present two algorithms to ensure the mutual
exclusion execution of processes in their critical sections.

Silberschatz, Galvin and Gagne 200217.6Operating System Concepts

DME: Centralized Approach
� One of the processes in the system is chosen to

coordinate the entry to the critical section.

� A process that wants to enter its critical section sends a
request message to the coordinator.

� The coordinator decides which process can enter the
critical section next, and its sends that process a reply
message.

� When the process receives a reply message from the
coordinator, it enters its critical section.

� After exiting its critical section, the process sends a
release message to the coordinator and proceeds with its
execution.

� This scheme requires three messages per critical-section
entry:

✦ request
✦ reply

✦ release

Silberschatz, Galvin and Gagne 200217.7Operating System Concepts

DME: Fully Distributed Approach

� When process Pi wants to enter its critical section, it
generates a new timestamp, TS, and sends the message
request (Pi, TS) to all other processes in the system.

� When process Pj receives a request message, it may
reply immediately or it may defer sending a reply back.

� When process Pi receives a reply message from all other
processes in the system, it can enter its critical section.

� After exiting its critical section, the process sends reply
messages to all its deferred requests.

Silberschatz, Galvin and Gagne 200217.8Operating System Concepts

DME: Fully Distributed Approach (Cont.)

� The decision whether process Pj replies immediately to a
request(Pi, TS) message or defers its reply is based on
three factors:

✦ If Pj is in its critical section, then it defers its reply to Pi.

✦ If Pj does not want to enter its critical section, then it sends
a reply immediately to Pi.

✦ If Pj wants to enter its critical section but has not yet entered
it, then it compares its own request timestamp with the
timestamp TS.

✔ If its own request timestamp is greater than TS, then it
sends a reply immediately to Pi (Pi asked first).

✔ Otherwise, the reply is deferred.

Silberschatz, Galvin and Gagne 200217.9Operating System Concepts

Desirable Behavior of Fully Distributed Approach

� Freedom from Deadlock is ensured.

� Freedom from starvation is ensured, since entry to the
critical section is scheduled according to the timestamp
ordering. The timestamp ordering ensures that
processes are served in a first-come, first served order.

� The number of messages per critical-section entry is

2 x (n – 1).

This is the minimum number of required messages per
critical-section entry when processes act independently
and concurrently.

Silberschatz, Galvin and Gagne 200217.10Operating System Concepts

Three Undesirable Consequences

� The processes need to know the identity of all other
processes in the system, which makes the dynamic
addition and removal of processes more complex.

� If one of the processes fails, then the entire scheme
collapses. This can be dealt with by continuously
monitoring the state of all the processes in the system.

� Processes that have not entered their critical section must
pause frequently to assure other processes that they
intend to enter the critical section. This protocol is
therefore suited for small, stable sets of cooperating
processes.

Silberschatz, Galvin and Gagne 200217.11Operating System Concepts

Atomicity

� Either all the operations associated with a program unit
are executed to completion, or none are performed.

� Ensuring atomicity in a distributed system requires a
transaction coordinator, which is responsible for the
following:

✦ Starting the execution of the transaction.
✦ Breaking the transaction into a number of subtransactions,

and distribution these subtransactions to the appropriate
sites for execution.

✦ Coordinating the termination of the transaction, which may
result in the transaction being committed at all sites or
aborted at all sites.

Silberschatz, Galvin and Gagne 200217.12Operating System Concepts

Two-Phase Commit Protocol (2PC)

� Assumes fail-stop model.

� Execution of the protocol is initiated by the coordinator
after the last step of the transaction has been reached.

� When the protocol is initiated, the transaction may still be
executing at some of the local sites.

� The protocol involves all the local sites at which the
transaction executed.

� Example: Let T be a transaction initiated at site Si and let
the transaction coordinator at Si be Ci.

Silberschatz, Galvin and Gagne 200217.13Operating System Concepts

Phase 1: Obtaining a Decision

� Ci adds <prepare T> record to the log.

� Ci sends <prepare T> message to all sites.

� When a site receives a <prepare T> message, the
transaction manager determines if it can commit the
transaction.

✦ If no: add <no T> record to the log and respond to Ci with
<abort T>.

✦ If yes:

✔ add <ready T> record to the log.
✔ force all log records for T onto stable storage.
✔ transaction manager sends <ready T> message to Ci.

Silberschatz, Galvin and Gagne 200217.14Operating System Concepts

Phase 1 (Cont.)

� Coordinator collects responses
✦ All respond “ready”,

decision is commit.

✦ At least one response is “abort”,
decision is abort.

✦ At least one participant fails to respond within time out
period,
decision is abort.

Silberschatz, Galvin and Gagne 200217.15Operating System Concepts

Phase 2: Recording Decision in the Database

� Coordinator adds a decision record

<abort T> or <commit T>

to its log and forces record onto stable storage.

� Once that record reaches stable storage it is irrevocable
(even if failures occur).

� Coordinator sends a message to each participant
informing it of the decision (commit or abort).

� Participants take appropriate action locally.

Silberschatz, Galvin and Gagne 200217.16Operating System Concepts

Failure Handling in 2PC – Site Failure

� The log contains a <commit T> record. In this case, the
site executes redo(T).

� The log contains an <abort T> record. In this case, the
site executes undo(T).

� The contains a <ready T> record; consult Ci. If Ci is
down, site sends query-status T message to the other
sites.

� The log contains no control records concerning T. In this
case, the site executes undo(T).

Silberschatz, Galvin and Gagne 200217.17Operating System Concepts

Failure Handling in 2PC – Coordinator Ci Failure

� If an active site contains a <commit T> record in its log,
the T must be committed.

� If an active site contains an <abort T> record in its log,
then T must be aborted.

� If some active site does not contain the record <ready T>
in its log then the failed coordinator Ci cannot have
decided to
commit T. Rather than wait for Ci to recover, it is
preferable to abort T.

� All active sites have a <ready T> record in their logs, but
no additional control records. In this case we must wait
for the coordinator to recover.

✦ Blocking problem – T is blocked pending the recovery of
site Si.

Silberschatz, Galvin and Gagne 200217.18Operating System Concepts

Concurrency Control

� Modify the centralized concurrency schemes to
accommodate the distribution of transactions.

� Transaction manager coordinates execution of
transactions (or subtransactions) that access data at local
sites.

� Local transaction only executes at that site.

� Global transaction executes at several sites.

Silberschatz, Galvin and Gagne 200217.19Operating System Concepts

Locking Protocols

� Can use the two-phase locking protocol in a distributed
environment by changing how the lock manager is
implemented.

� Nonreplicated scheme – each site maintains a local lock
manager which administers lock and unlock requests for
those data items that are stored in that site.

✦ Simple implementation involves two message transfers for
handling lock requests, and one message transfer for
handling unlock requests.

✦ Deadlock handling is more complex.

Silberschatz, Galvin and Gagne 200217.20Operating System Concepts

Single-Coordinator Approach

� A single lock manager resides in a single chosen site, all lock
and unlock requests are made a that site.

� Simple implementation

� Simple deadlock handling

� Possibility of bottleneck

� Vulnerable to loss of concurrency controller if single site fails

� Multiple-coordinator approach distributes lock-manager function
over several sites.

Silberschatz, Galvin and Gagne 200217.21Operating System Concepts

Majority Protocol

� Avoids drawbacks of central control by dealing with
replicated data in a decentralized manner.

� More complicated to implement

� Deadlock-handling algorithms must be modified; possible
for deadlock to occur in locking only one data item.

Silberschatz, Galvin and Gagne 200217.22Operating System Concepts

Biased Protocol

� Similar to majority protocol, but requests for shared locks
prioritized over requests for exclusive locks.

� Less overhead on read operations than in majority
protocol; but has additional overhead on writes.

� Like majority protocol, deadlock handling is complex.

Silberschatz, Galvin and Gagne 200217.23Operating System Concepts

Primary Copy

� One of the sites at which a replica resides is designated
as the primary site. Request to lock a data item is made
at the primary site of that data item.

� Concurrency control for replicated data handled in a
manner similar to that of unreplicated data.

� Simple implementation, but if primary site fails, the data
item is unavailable, even though other sites may have a
replica.

Silberschatz, Galvin and Gagne 200217.24Operating System Concepts

Timestamping

� Generate unique timestamps in distributed scheme:
✦ Each site generates a unique local timestamp.

✦ The global unique timestamp is obtained by concatenation
of the unique local timestamp with the unique site identifier

✦ Use a logical clock defined within each site to ensure the
fair generation of timestamps.

� Timestamp-ordering scheme – combine the centralized
concurrency control timestamp scheme with the 2PC
protocol to obtain a protocol that ensures serializability
with no cascading rollbacks.

Silberschatz, Galvin and Gagne 200217.25Operating System Concepts

Generation of Unique Timestamps

Silberschatz, Galvin and Gagne 200217.26Operating System Concepts

Deadlock Prevention

� Resource-ordering deadlock-prevention – define a global
ordering among the system resources.

✦ Assign a unique number to all system resources.

✦ A process may request a resource with unique number i
only if it is not holding a resource with a unique number
grater than i.

✦ Simple to implement; requires little overhead.

� Banker’s algorithm – designate one of the processes in
the system as the process that maintains the information
necessary to carry out the Banker’s algorithm.

✦ Also implemented easily, but may require too much
overhead.

Silberschatz, Galvin and Gagne 200217.27Operating System Concepts

Timestamped Deadlock-Prevention Scheme

� Each process Pi is assigned a unique priority number

� Priority numbers are used to decide whether a process Pi

should wait for a process Pj; otherwise Pi is rolled back.

� The scheme prevents deadlocks. For every edge Pi → Pj
in the wait-for graph, Pi has a higher priority than Pj. Thus
a cycle cannot exist.

Silberschatz, Galvin and Gagne 200217.28Operating System Concepts

Wait-Die Scheme

� Based on a nonpreemptive technique.

� If Pi requests a resource currently held by Pj, Pi is
allowed to wait only if it has a smaller timestamp than
does Pj (Pi is older than Pj). Otherwise, Pi is rolled back
(dies).

� Example: Suppose that processes P1, P2, and P3 have
timestamps t, 10, and 15 respectively.

✦ if P1 request a resource held by P2, then P1 will wait.
✦ If P3 requests a resource held by P2, then P3 will be rolled

back.

Silberschatz, Galvin and Gagne 200217.29Operating System Concepts

Would-Wait Scheme

� Based on a preemptive technique; counterpart to the
wait-die system.

� If Pi requests a resource currently held by Pj, Pi is allowed
to wait only if it has a larger timestamp than does Pj (Pi is
younger than Pj). Otherwise Pj is rolled back (Pj is
wounded by Pi).

� Example: Suppose that processes P1, P2, and P3 have
timestamps 5, 10, and 15 respectively.

✦ If P1 requests a resource held by P2, then the resource will
be preempted from P2 and P2 will be rolled back.

✦ If P3 requests a resource held by P2, then P3 will wait.

Silberschatz, Galvin and Gagne 200217.30Operating System Concepts

Two Local Wait-For Graphs

Silberschatz, Galvin and Gagne 200217.31Operating System Concepts

Global Wait-For Graph

Silberschatz, Galvin and Gagne 200217.32Operating System Concepts

Deadlock Detection – Centralized Approach

� Each site keeps a local wait-for graph. The nodes of the
graph correspond to all the processes that are currently
either holding or requesting any of the resources local to
that site.

� A global wait-for graph is maintained in a single
coordination process; this graph is the union of all local
wait-for graphs.

� There are three different options (points in time) when the
wait-for graph may be constructed:
1. Whenever a new edge is inserted or removed in one of the

local wait-for graphs.
2. Periodically, when a number of changes have occurred in a

wait-for graph.

3. Whenever the coordinator needs to invoke the cycle-
detection algorithm..

� Unnecessary rollbacks may occur as a result of false
cycles.

Silberschatz, Galvin and Gagne 200217.33Operating System Concepts

Detection Algorithm Based on Option 3

� Append unique identifiers (timestamps) to requests form
different sites.

� When process Pi, at site A, requests a resource from
process Pj, at site B, a request message with timestamp
TS is sent.

� The edge Pi → Pj with the label TS is inserted in the local
wait-for of A. The edge is inserted in the local wait-for
graph of B only if B has received the request message
and cannot immediately grant the requested resource.

Silberschatz, Galvin and Gagne 200217.34Operating System Concepts

The Algorithm

1. The controller sends an initiating message to each site in
the system.

2. On receiving this message, a site sends its local wait-for
graph to the coordinator.

3. When the controller has received a reply from each site, it
constructs a graph as follows:
(a) The constructed graph contains a vertex for every process

in the system.

(b) The graph has an edge Pi → Pj if and only if (1) there is an
edge Pi → Pj in one of the wait-for graphs, or (2) an edge
Pi → Pj with some label TS appears in more than one
wait-for graph.

If the constructed graph contains a cycle � deadlock.

Silberschatz, Galvin and Gagne 200217.35Operating System Concepts

Local and Global Wait-For Graphs

Silberschatz, Galvin and Gagne 200217.36Operating System Concepts

Fully Distributed Approach

� All controllers share equally the responsibility for
detecting deadlock.

� Every site constructs a wait-for graph that represents a
part of the total graph.

� We add one additional node Pex to each local wait-for
graph.

� If a local wait-for graph contains a cycle that does not
involve node Pex, then the system is in a deadlock state.

� A cycle involving Pex implies the possibility of a deadlock.
To ascertain whether a deadlock does exist, a distributed
deadlock-detection algorithm must be invoked.

Silberschatz, Galvin and Gagne 200217.37Operating System Concepts

Augmented Local Wait-For Graphs

Silberschatz, Galvin and Gagne 200217.38Operating System Concepts

Augmented Local Wait-For Graph in Site S2

Silberschatz, Galvin and Gagne 200217.39Operating System Concepts

Election Algorithms

� Determine where a new copy of the coordinator should be
restarted.

� Assume that a unique priority number is associated with
each active process in the system, and assume that the
priority number of process Pi is i.

� Assume a one-to-one correspondence between
processes and sites.

� The coordinator is always the process with the largest
priority number. When a coordinator fails, the algorithm
must elect that active process with the largest priority
number.

� Two algorithms, the bully algorithm and a ring algorithm,
can be used to elect a new coordinator in case of failures.

Silberschatz, Galvin and Gagne 200217.40Operating System Concepts

Bully Algorithm

� Applicable to systems where every process can send a
message to every other process in the system.

� If process Pi sends a request that is not answered by the
coordinator within a time interval T, assume that the
coordinator has failed; Pi tries to elect itself as the new
coordinator.

� Pi sends an election message to every process with a
higher priority number, Pi then waits for any of these
processes to answer within T.

Silberschatz, Galvin and Gagne 200217.41Operating System Concepts

Bully Algorithm (Cont.)

� If no response within T, assume that all processes with
numbers greater than i have failed; Pi elects itself the new
coordinator.

� If answer is received, Pi begins time interval T´, waiting to
receive a message that a process with a higher priority
number has been elected.

� If no message is sent within T´, assume the process with
a higher number has failed; Pi should restart the algorithm

Silberschatz, Galvin and Gagne 200217.42Operating System Concepts

Bully Algorithm (Cont.)

� If Pi is not the coordinator, then, at any time during execution, Pi
may receive one of the following two messages from process Pj.

✦ Pj is the new coordinator (j > i). Pi, in turn, records this information.
✦ Pj started an election (j > i). Pi, sends a response to Pj and begins

its own election algorithm, provided that Pi has not already initiated
such an election.

� After a failed process recovers, it immediately begins execution
of the same algorithm.

� If there are no active processes with higher numbers, the
recovered process forces all processes with lower number to let
it become the coordinator process, even if there is a currently
active coordinator with a lower number.

Silberschatz, Galvin and Gagne 200217.43Operating System Concepts

Ring Algorithm

� Applicable to systems organized as a ring (logically or
physically).

� Assumes that the links are unidirectional, and that processes
send their messages to their right neighbors.

� Each process maintains an active list, consisting of all the
priority numbers of all active processes in the system when
the algorithm ends.

� If process Pi detects a coordinator failure, I creates a new
active list that is initially empty. It then sends a message
elect(i) to its right neighbor, and adds the number i to its active
list.

Silberschatz, Galvin and Gagne 200217.44Operating System Concepts

Ring Algorithm (Cont.)

� If Pi receives a message elect(j) from the process on the
left, it must respond in one of three ways:

1. If this is the first elect message it has seen or sent, Pi
creates a new active list with the numbers i and j. It then
sends the message elect(i), followed by the message
elect(j).

✦ If i ≠ j, then the active list for Pi now contains the numbers
of all the active processes in the system. Pi can now
determine the largest number in the active list to identify the
new coordinator process.

✦ If i = j, then Pi receives the message elect(i). The active list
for Pi contains all the active processes in the system. Pi can
now determine the new coordinator process.

Silberschatz, Galvin and Gagne 200217.45Operating System Concepts

Reaching Agreement

� There are applications where a set of processes wish to
agree on a common “value”.

� Such agreement may not take place due to:
✦ Faulty communication medium
✦ Faulty processes

✔ Processes may send garbled or incorrect messages to
other processes.

✔ A subset of the processes may collaborate with each
other in an attempt to defeat the scheme.

Silberschatz, Galvin and Gagne 200217.46Operating System Concepts

Faulty Communications

� Process Pi at site A, has sent a message to process Pj at
site B; to proceed, Pi needs to know if Pj has received the
message.

� Detect failures using a time-out scheme.
✦ When Pi sends out a message, it also specifies a time

interval during which it is willing to wait for an
acknowledgment message form Pj.

✦ When Pj receives the message, it immediately sends an
acknowledgment to Pi.

✦ If Pi receives the acknowledgment message within the
specified time interval, it concludes that Pj has received its
message. If a time-out occurs, Pj needs to retransmit its
message and wait for an acknowledgment.

✦ Continue until Pi either receives an acknowledgment, or is
notified by the system that B is down.

Silberschatz, Galvin and Gagne 200217.47Operating System Concepts

Faulty Communications (Cont.)

� Suppose that Pj also needs to know that Pi has received
its acknowledgment message, in order to decide on how
to proceed.

✦ In the presence of failure, it is not possible to accomplish
this task.

✦ It is not possible in a distributed environment for processes
Pi and Pj to agree completely on their respective states.

Silberschatz, Galvin and Gagne 200217.48Operating System Concepts

Faulty Processes (Byzantine Generals Problem)

� Communication medium is reliable, but processes can
fail in unpredictable ways.

� Consider a system of n processes, of which no more
than m are faulty. Suppose that each process Pi has
some private value of Vi.

� Devise an algorithm that allows each nonfaulty Pi to
construct a vector Xi = (Ai,1, Ai,2, …, Ai,n) such that::

✦ If Pj is a nonfaulty process, then Aij = Vj.

✦ If Pi and Pj are both nonfaulty processes, then Xi = Xj.

� Solutions share the following properties.
✦ A correct algorithm can be devised only if n ≥ 3 x m + 1.
✦ The worst-case delay for reaching agreement is

proportionate to m + 1 message-passing delays.

Silberschatz, Galvin and Gagne 200217.49Operating System Concepts

Faulty Processes (Cont.)

� An algorithm for the case where m = 1 and n = 4 requires
two rounds of information exchange:

✦ Each process sends its private value to the other 3
processes.

✦ Each process sends the information it has obtained in the
first round to all other processes.

� If a faulty process refuses to send messages, a nonfaulty
process can choose an arbitrary value and pretend that
that value was sent by that process.

� After the two rounds are completed, a nonfaulty process
Pi can construct its vector Xi = (Ai,1, Ai,2, Ai,3, Ai,4) as
follows:

✦ Ai,j = Vi.

✦ For j ≠ i, if at least two of the three values reported for
process Pj agree, then the majority value is used to set the
value of Aij. Otherwise, a default value (nil) is used.

