
Silberschatz, Galvin and Gagne 20026.1Operating System Concepts

Chapter 6: CPU Scheduling

� Basic Concepts

� Scheduling Criteria

� Scheduling Algorithms

� Multiple-Processor Scheduling

� Real-Time Scheduling
� Algorithm Evaluation

Silberschatz, Galvin and Gagne 20026.2Operating System Concepts

Basic Concepts

� Maximum CPU utilization obtained with
multiprogramming

� CPU–I/O Burst Cycle – Process execution consists of a
cycle of CPU execution and I/O wait.

� CPU burst distribution

Silberschatz, Galvin and Gagne 20026.3Operating System Concepts

Alternating Sequence of CPU And I/O Bursts

Silberschatz, Galvin and Gagne 20026.4Operating System Concepts

Histogram of CPU-burst Times

Silberschatz, Galvin and Gagne 20026.5Operating System Concepts

CPU Scheduler

� Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.

� CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state.
2. Switches from running to ready state.

3. Switches from waiting to ready.
4. Terminates.

� Scheduling under 1 and 4 is nonpreemptive.

� All other scheduling is preemptive.

Silberschatz, Galvin and Gagne 20026.6Operating System Concepts

Dispatcher

� Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:

✦ switching context
✦ switching to user mode

✦ jumping to the proper location in the user program to restart
that program

� Dispatch latency – time it takes for the dispatcher to stop
one process and start another running.

Silberschatz, Galvin and Gagne 20026.7Operating System Concepts

Scheduling Criteria

� CPU utilization – keep the CPU as busy as possible

� Throughput – # of processes that complete their
execution per time unit

� Turnaround time – amount of time to execute a particular
process

� Waiting time – amount of time a process has been waiting
in the ready queue

� Response time – amount of time it takes from when a
request was submitted until the first response is
produced, not output (for time-sharing environment)

Silberschatz, Galvin and Gagne 20026.8Operating System Concepts

Optimization Criteria

� Max CPU utilization

� Max throughput

� Min turnaround time

� Min waiting time
� Min response time

Silberschatz, Galvin and Gagne 20026.9Operating System Concepts

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

 P2 3

 P3 3
� Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

� Waiting time for P1 = 0; P2 = 24; P3 = 27

� Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

Silberschatz, Galvin and Gagne 20026.10Operating System Concepts

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

 P2 , P3 , P1 .

� The Gantt chart for the schedule is:

� Waiting time for P1 = 6; P2 = 0; P3 = 3

� Average waiting time: (6 + 0 + 3)/3 = 3
� Much better than previous case.

� Convoy effect short process behind long process

P1P3P2

63 300

Silberschatz, Galvin and Gagne 20026.11Operating System Concepts

Shortest-Job-First (SJR) Scheduling

� Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

� Two schemes:
✦ nonpreemptive – once CPU given to the process it cannot

be preempted until completes its CPU burst.
✦ preemptive – if a new process arrives with CPU burst length

less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

� SJF is optimal – gives minimum average waiting time for
a given set of processes.

Silberschatz, Galvin and Gagne 20026.12Operating System Concepts

Process Arrival Time Burst Time

P1 0.0 7

 P2 2.0 4

 P3 4.0 1
 P4 5.0 4

� SJF (non-preemptive)

� Average waiting time = (0 + 6 + 3 + 7)/4 - 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

Silberschatz, Galvin and Gagne 20026.13Operating System Concepts

Example of Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

 P2 2.0 4

 P3 4.0 1
 P4 5.0 4

� SJF (preemptive)

� Average waiting time = (9 + 1 + 0 +2)/4 - 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Silberschatz, Galvin and Gagne 20026.14Operating System Concepts

Determining Length of Next CPU Burst

� Can only estimate the length.

� Can be done by using the length of previous CPU bursts,
using exponential averaging.

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of lenght actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .t nnn ταατ −+== 11

Silberschatz, Galvin and Gagne 20026.15Operating System Concepts

Prediction of the Length of the Next CPU Burst

Silberschatz, Galvin and Gagne 20026.16Operating System Concepts

Examples of Exponential Averaging

� α =0
✦ τn+1 = τn

✦ Recent history does not count.

� α =1
✦ τn+1 = tn
✦ Only the actual last CPU burst counts.

� If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …
 +(1 - α)j α tn -1 + …

 +(1 - α)n=1 tn τ0

� Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor.

Silberschatz, Galvin and Gagne 20026.17Operating System Concepts

Priority Scheduling

� A priority number (integer) is associated with each
process

� The CPU is allocated to the process with the highest
priority (smallest integer ≡ highest priority).

✦ Preemptive
✦ nonpreemptive

� SJF is a priority scheduling where priority is the predicted
next CPU burst time.

� Problem ≡ Starvation – low priority processes may never
execute.

� Solution ≡ Aging – as time progresses increase the
priority of the process.

Silberschatz, Galvin and Gagne 20026.18Operating System Concepts

Round Robin (RR)

� Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

� If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

� Performance
✦ q large � FIFO
✦ q small � q must be large with respect to context switch,

otherwise overhead is too high.

Silberschatz, Galvin and Gagne 20026.19Operating System Concepts

Example of RR with Time Quantum = 20

Process Burst Time

P1 53

 P2 17

 P3 68
 P4 24

� The Gantt chart is:

� Typically, higher average turnaround than SJF, but better
response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Silberschatz, Galvin and Gagne 20026.20Operating System Concepts

Time Quantum and Context Switch Time

Silberschatz, Galvin and Gagne 20026.21Operating System Concepts

Turnaround Time Varies With The Time Quantum

Silberschatz, Galvin and Gagne 20026.22Operating System Concepts

Multilevel Queue

� Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

� Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

� Scheduling must be done between the queues.
✦ Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation.
✦ Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to
foreground in RR

✦ 20% to background in FCFS

Silberschatz, Galvin and Gagne 20026.23Operating System Concepts

Multilevel Queue Scheduling

Silberschatz, Galvin and Gagne 20026.24Operating System Concepts

Multilevel Feedback Queue

� A process can move between the various queues; aging
can be implemented this way.

� Multilevel-feedback-queue scheduler defined by the
following parameters:

✦ number of queues
✦ scheduling algorithms for each queue

✦ method used to determine when to upgrade a process
✦ method used to determine when to demote a process
✦ method used to determine which queue a process will enter

when that process needs service

Silberschatz, Galvin and Gagne 20026.25Operating System Concepts

Example of Multilevel Feedback Queue

� Three queues:
✦ Q0 – time quantum 8 milliseconds
✦ Q1 – time quantum 16 milliseconds

✦ Q2 – FCFS

� Scheduling
✦ A new job enters queue Q0 which is served FCFS. When it

gains CPU, job receives 8 milliseconds. If it does not finish
in 8 milliseconds, job is moved to queue Q1.

✦ At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted
and moved to queue Q2.

Silberschatz, Galvin and Gagne 20026.26Operating System Concepts

Multilevel Feedback Queues

Silberschatz, Galvin and Gagne 20026.27Operating System Concepts

Multiple-Processor Scheduling

� CPU scheduling more complex when multiple CPUs are
available.

� Homogeneous processors within a multiprocessor.

� Load sharing

� Asymmetric multiprocessing – only one processor
accesses the system data structures, alleviating the need
for data sharing.

Silberschatz, Galvin and Gagne 20026.28Operating System Concepts

Real-Time Scheduling

� Hard real-time systems – required to complete a critical
task within a guaranteed amount of time.

� Soft real-time computing – requires that critical processes
receive priority over less fortunate ones.

Silberschatz, Galvin and Gagne 20026.29Operating System Concepts

Dispatch Latency

Silberschatz, Galvin and Gagne 20026.30Operating System Concepts

Algorithm Evaluation

� Deterministic modeling – takes a particular predetermined
workload and defines the performance of each algorithm
for that workload.

� Queueing models

� Implementation

Silberschatz, Galvin and Gagne 20026.31Operating System Concepts

Evaluation of CPU Schedulers by Simulation

Silberschatz, Galvin and Gagne 20026.32Operating System Concepts

Solaris 2 Scheduling

Silberschatz, Galvin and Gagne 20026.33Operating System Concepts

Windows 2000 Priorities

