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Chapter 6:  CPU Scheduling

� Basic Concepts

� Scheduling Criteria

� Scheduling Algorithms

� Multiple-Processor Scheduling

� Real-Time Scheduling
� Algorithm Evaluation
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Basic Concepts

� Maximum CPU utilization obtained with
multiprogramming

� CPU–I/O Burst Cycle – Process execution consists of a
cycle of CPU execution and I/O wait.

� CPU burst distribution
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Alternating Sequence of CPU And I/O Bursts
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Histogram of CPU-burst Times
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CPU Scheduler

� Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.

� CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state.
2. Switches from running to ready state.

3. Switches from waiting to ready.
4. Terminates.

� Scheduling under 1 and 4 is nonpreemptive.

� All other scheduling is preemptive.
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Dispatcher

� Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:

✦ switching context
✦ switching to user mode

✦ jumping to the proper location in the user program to restart
that program

� Dispatch latency – time it takes for the dispatcher to stop
one process and start another running.
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Scheduling Criteria

� CPU utilization – keep the CPU as busy as possible

� Throughput – # of processes that complete their
execution per time unit

� Turnaround time – amount of time to execute a particular
process

� Waiting time – amount of time a process has been waiting
in the ready queue

� Response time – amount of time it takes from when a
request was submitted until the first response is
produced, not output  (for time-sharing environment)
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Optimization Criteria

� Max CPU utilization

� Max throughput

� Min turnaround time

� Min waiting time
� Min response time
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First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

 P2 3

 P3  3
� Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

� Waiting time for P1  = 0; P2  = 24; P3 = 27

� Average waiting time:  (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300
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FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

 P2 , P3 , P1 .

� The Gantt chart for the schedule is:

� Waiting time for P1 = 6; P2 = 0; P3 = 3

� Average waiting time:   (6 + 0 + 3)/3 = 3
� Much better than previous case.

� Convoy effect short process behind long process

P1P3P2

63 300
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Shortest-Job-First (SJR) Scheduling

� Associate with each process the length of its next CPU
burst.  Use these lengths to schedule the process with the
shortest time.

� Two schemes:
✦ nonpreemptive – once CPU given to the process it cannot

be preempted until completes its CPU burst.
✦ preemptive – if a new process arrives with CPU burst length

less than remaining time of current executing process,
preempt.  This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

� SJF is optimal – gives minimum average waiting time for
a given set of processes.
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Process Arrival Time Burst Time

P1 0.0 7

 P2 2.0 4

 P3 4.0 1
 P4 5.0 4

� SJF (non-preemptive)

� Average waiting time = (0 + 6 + 3 + 7)/4 - 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12
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Example of Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

 P2 2.0 4

 P3 4.0 1
 P4 5.0 4

� SJF (preemptive)

� Average waiting time = (9 + 1 + 0 +2)/4 - 3

P1 P3P2

42 110

P4

5 7

P2 P1

16
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Determining Length of Next CPU Burst

� Can only estimate the length.

� Can be done by using the length of previous CPU bursts,
using exponential averaging.
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Prediction of the Length of the Next CPU Burst
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Examples of Exponential Averaging

� α =0
✦ τn+1 = τn

✦ Recent history does not count.

� α =1
✦  τn+1 = tn
✦ Only the actual last CPU burst counts.

� If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …
            +(1 - α )j α tn -1 + …

            +(1 - α )n=1 tn τ0

� Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor.
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Priority Scheduling

� A priority number (integer) is associated with each
process

� The CPU is allocated to the process with the highest
priority (smallest integer ≡ highest priority).

✦ Preemptive
✦ nonpreemptive

� SJF is a priority scheduling where priority is the predicted
next CPU burst time.

� Problem ≡ Starvation – low priority processes may never
execute.

� Solution ≡ Aging – as time progresses increase the
priority of the process.
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Round Robin (RR)

� Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds.  After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

� If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once.  No process
waits more than (n-1)q time units.

� Performance
✦ q large � FIFO
✦ q small � q must be large with respect to context switch,

otherwise overhead is too high.
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Example of RR with Time Quantum = 20

Process Burst Time

P1 53

 P2  17

 P3 68
 P4  24

� The Gantt chart is:

� Typically, higher average turnaround than SJF, but better
response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162
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Time Quantum and Context Switch Time
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Turnaround Time Varies With The Time Quantum
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Multilevel Queue

� Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

� Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

� Scheduling must be done between the queues.
✦ Fixed priority scheduling; (i.e., serve all from foreground

then from background).  Possibility of starvation.
✦ Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to
foreground in RR

✦ 20% to background in FCFS
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Multilevel Queue Scheduling
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Multilevel Feedback Queue

� A process can move between the various queues; aging
can be implemented this way.

� Multilevel-feedback-queue scheduler defined by the
following parameters:

✦ number of queues
✦ scheduling algorithms for each queue

✦ method used to determine when to upgrade a process
✦ method used to determine when to demote a process
✦ method used to determine which queue a process will enter

when that process needs service
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Example of Multilevel Feedback Queue

� Three queues:
✦ Q0 – time quantum 8 milliseconds
✦ Q1 – time quantum 16 milliseconds

✦ Q2 – FCFS

� Scheduling
✦ A new job enters queue Q0 which is served FCFS. When it

gains CPU, job receives 8 milliseconds.  If it does not finish
in 8 milliseconds, job is moved to queue Q1.

✦ At Q1 job is again served FCFS and receives 16 additional
milliseconds.  If it still does not complete, it is preempted
and moved to queue Q2.
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Multilevel Feedback Queues
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Multiple-Processor Scheduling

� CPU scheduling more complex when multiple CPUs are
available.

� Homogeneous processors within a multiprocessor.

� Load sharing

� Asymmetric multiprocessing – only one processor
accesses the system data structures, alleviating the need
for data sharing.
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Real-Time Scheduling

� Hard real-time systems – required to complete a critical
task within a guaranteed amount of time.

� Soft real-time computing – requires that critical processes
receive priority over less fortunate ones.
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Dispatch Latency
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Algorithm Evaluation

� Deterministic modeling – takes a particular predetermined
workload and defines the performance of each algorithm
for that workload.

� Queueing models

� Implementation
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Evaluation of CPU Schedulers by Simulation
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Solaris 2 Scheduling
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Windows 2000 Priorities


