
Silberschatz, Galvin and Gagne 20028.1Operating System Concepts

Chapter 8: Deadlocks

� System Model

� Deadlock Characterization

� Methods for Handling Deadlocks

� Deadlock Prevention
� Deadlock Avoidance

� Deadlock Detection

� Recovery from Deadlock

� Combined Approach to Deadlock Handling

Silberschatz, Galvin and Gagne 20028.2Operating System Concepts

The Deadlock Problem

� A set of blocked processes each holding a resource and
waiting to acquire a resource held by another process in
the set.

� Example
✦ System has 2 tape drives.
✦ P1 and P2 each hold one tape drive and each needs another

one.

� Example
✦ semaphores A and B, initialized to 1

 P0 P1

wait (A); wait(B)

wait (B); wait(A)

Silberschatz, Galvin and Gagne 20028.3Operating System Concepts

Bridge Crossing Example

� Traffic only in one direction.

� Each section of a bridge can be viewed as a resource.

� If a deadlock occurs, it can be resolved if one car backs
up (preempt resources and rollback).

� Several cars may have to be backed up if a deadlock
occurs.

� Starvation is possible.

Silberschatz, Galvin and Gagne 20028.4Operating System Concepts

System Model

� Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

� Each resource type Ri has Wi instances.

� Each process utilizes a resource as follows:
✦ request
✦ use

✦ release

Silberschatz, Galvin and Gagne 20028.5Operating System Concepts

Deadlock Characterization

� Mutual exclusion: only one process at a time can use a
resource.

� Hold and wait: a process holding at least one resource
is waiting to acquire additional resources held by other
processes.

� No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task.

� Circular wait: there exists a set {P0, P1, …, P0} of waiting
processes such that P0 is waiting for a resource that is
held by P1, P1 is waiting for a resource that is held by
P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

Silberschatz, Galvin and Gagne 20028.6Operating System Concepts

Resource-Allocation Graph

� V is partitioned into two types:
✦ P = {P1, P2, …, Pn}, the set consisting of all the processes in

the system.

✦ R = {R1, R2, …, Rm}, the set consisting of all resource types
in the system.

� request edge – directed edge P1 → Rj

� assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

Silberschatz, Galvin and Gagne 20028.7Operating System Concepts

Resource-Allocation Graph (Cont.)

� Process

� Resource Type with 4 instances

� Pi requests instance of Rj

� Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

Silberschatz, Galvin and Gagne 20028.8Operating System Concepts

Example of a Resource Allocation Graph

Silberschatz, Galvin and Gagne 20028.9Operating System Concepts

Resource Allocation Graph With A Deadlock

Silberschatz, Galvin and Gagne 20028.10Operating System Concepts

Resource Allocation Graph With A Cycle But No Deadlock

Silberschatz, Galvin and Gagne 20028.11Operating System Concepts

Basic Facts

� If graph contains no cycles � no deadlock.

� If graph contains a cycle �
✦ if only one instance per resource type, then deadlock.
✦ if several instances per resource type, possibility of

deadlock.

Silberschatz, Galvin and Gagne 20028.12Operating System Concepts

Methods for Handling Deadlocks

� Ensure that the system will never enter a deadlock state.

� Allow the system to enter a deadlock state and then
recover.

� Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX.

Silberschatz, Galvin and Gagne 20028.13Operating System Concepts

Deadlock Prevention

� Mutual Exclusion – not required for sharable resources;
must hold for nonsharable resources.

� Hold and Wait – must guarantee that whenever a
process requests a resource, it does not hold any other
resources.

✦ Require process to request and be allocated all its
resources before it begins execution, or allow process to
request resources only when the process has none.

✦ Low resource utilization; starvation possible.

Restrain the ways request can be made.

Silberschatz, Galvin and Gagne 20028.14Operating System Concepts

Deadlock Prevention (Cont.)

� No Preemption –
✦ If a process that is holding some resources requests

another resource that cannot be immediately allocated to it,
then all resources currently being held are released.

✦ Preempted resources are added to the list of resources for
which the process is waiting.

✦ Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

� Circular Wait – impose a total ordering of all resource
types, and require that each process requests resources
in an increasing order of enumeration.

Silberschatz, Galvin and Gagne 20028.15Operating System Concepts

Deadlock Avoidance

� Simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need.

� The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can
never be a circular-wait condition.

� Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

Requires that the system has some additional a priori information
available.

Silberschatz, Galvin and Gagne 20028.16Operating System Concepts

Safe State

� When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

� System is in safe state if there exists a safe sequence of all
processes.

� Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources
that Pi can still request can be satisfied by currently available
resources + resources held by all the Pj, with j<I.

✦ If Pi resource needs are not immediately available, then Pi can wait
until all Pj have finished.

✦ When Pj is finished, Pi can obtain needed resources, execute,
return allocated resources, and terminate.

✦ When Pi terminates, Pi+1 can obtain its needed resources, and so
on.

Silberschatz, Galvin and Gagne 20028.17Operating System Concepts

Basic Facts

� If a system is in safe state � no deadlocks.

� If a system is in unsafe state � possibility of deadlock.

� Avoidance � ensure that a system will never enter an
unsafe state.

Silberschatz, Galvin and Gagne 20028.18Operating System Concepts

Safe, Unsafe , Deadlock State

Silberschatz, Galvin and Gagne 20028.19Operating System Concepts

Resource-Allocation Graph Algorithm

� Claim edge Pi → Rj indicated that process Pj may request
resource Rj; represented by a dashed line.

� Claim edge converts to request edge when a process
requests a resource.

� When a resource is released by a process, assignment
edge reconverts to a claim edge.

� Resources must be claimed a priori in the system.

Silberschatz, Galvin and Gagne 20028.20Operating System Concepts

Resource-Allocation Graph For Deadlock Avoidance

Silberschatz, Galvin and Gagne 20028.21Operating System Concepts

Unsafe State In Resource-Allocation Graph

Silberschatz, Galvin and Gagne 20028.22Operating System Concepts

Banker’s Algorithm

� Multiple instances.

� Each process must a priori claim maximum use.

� When a process requests a resource it may have to wait.

� When a process gets all its resources it must return them
in a finite amount of time.

Silberschatz, Galvin and Gagne 20028.23Operating System Concepts

Data Structures for the Banker’s Algorithm

� Available: Vector of length m. If available [j] = k, there are
k instances of resource type Rj available.

� Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj.

� Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj.

� Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types.

Silberschatz, Galvin and Gagne 20028.24Operating System Concepts

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available
Finish [i] = false for i - 1,3, …, n.

2. Find and i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe
state.

Silberschatz, Galvin and Gagne 20028.25Operating System Concepts

Resource-Request Algorithm for Process Pi

 Request = request vector for process Pi. If Requesti [j] = k
then process Pi wants k instances of resource type Rj.

1. If Requesti ≤ Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

2. If Requesti ≤ Available, go to step 3. Otherwise Pi must
wait, since resources are not available.

3. Pretend to allocate requested resources to Pi by modifying
the state as follows:

Available = Available = Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;;

• If safe � the resources are allocated to Pi.
• If unsafe � Pi must wait, and the old resource-allocation

state is restored

Silberschatz, Galvin and Gagne 20028.26Operating System Concepts

Example of Banker’s Algorithm

� 5 processes P0 through P4; 3 resource types A
(10 instances),
B (5instances, and C (7 instances).

� Snapshot at time T0:

Allocation Max Available

A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

Silberschatz, Galvin and Gagne 20028.27Operating System Concepts

Example (Cont.)

� The content of the matrix. Need is defined to be Max –
Allocation.

Need

A B C

 P0 7 4 3

 P1 1 2 2
 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

� The system is in a safe state since the sequence < P1, P3, P4,
P2, P0> satisfies safety criteria.

Silberschatz, Galvin and Gagne 20028.28Operating System Concepts

Example P1 Request (1,0,2) (Cont.)

� Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) �
true.

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0

P2 3 0 1 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

� Executing safety algorithm shows that sequence <P1, P3, P4,
P0, P2> satisfies safety requirement.

� Can request for (3,3,0) by P4 be granted?

� Can request for (0,2,0) by P0 be granted?

Silberschatz, Galvin and Gagne 20028.29Operating System Concepts

Deadlock Detection

� Allow system to enter deadlock state

� Detection algorithm

� Recovery scheme

Silberschatz, Galvin and Gagne 20028.30Operating System Concepts

Single Instance of Each Resource Type

� Maintain wait-for graph
✦ Nodes are processes.

✦ Pi → Pj if Pi is waiting for Pj.

� Periodically invoke an algorithm that searches for a cycle
in the graph.

� An algorithm to detect a cycle in a graph requires an
order of n2 operations, where n is the number of vertices
in the graph.

Silberschatz, Galvin and Gagne 20028.31Operating System Concepts

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Silberschatz, Galvin and Gagne 20028.32Operating System Concepts

Several Instances of a Resource Type

� Available: A vector of length m indicates the number of
available resources of each type.

� Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each
process.

� Request: An n x m matrix indicates the current request
of each process. If Request [ij] = k, then process Pi is
requesting k more instances of resource type. Rj.

Silberschatz, Galvin and Gagne 20028.33Operating System Concepts

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:
(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi ≠ 0, then
Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:
(a) Finish[i] == false

(b) Requesti ≤ Work

If no such i exists, go to step 4.

Silberschatz, Galvin and Gagne 20028.34Operating System Concepts

Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 ≤ i ≤ n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked.

Algorithm requires an order of O(m x n2) operations to detect
whether the system is in deadlocked state.

Silberschatz, Galvin and Gagne 20028.35Operating System Concepts

Example of Detection Algorithm

� Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances).

� Snapshot at time T0:

Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2
� Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true

for all i.

Silberschatz, Galvin and Gagne 20028.36Operating System Concepts

Example (Cont.)

� P2 requests an additional instance of type C.

Request

A B C

 P0 0 0 0
 P1 2 0 1

P2 0 0 1

P3 1 0 0

P4 0 0 2

� State of system?
✦ Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests.
✦ Deadlock exists, consisting of processes P1, P2, P3, and P4.

Silberschatz, Galvin and Gagne 20028.37Operating System Concepts

Detection-Algorithm Usage

� When, and how often, to invoke depends on:
✦ How often a deadlock is likely to occur?
✦ How many processes will need to be rolled back?

✔ one for each disjoint cycle

� If detection algorithm is invoked arbitrarily, there may be
many cycles in the resource graph and so we would not
be able to tell which of the many deadlocked processes
“caused” the deadlock.

Silberschatz, Galvin and Gagne 20028.38Operating System Concepts

Recovery from Deadlock: Process Termination

� Abort all deadlocked processes.

� Abort one process at a time until the deadlock cycle is
eliminated.

� In which order should we choose to abort?
✦ Priority of the process.
✦ How long process has computed, and how much longer to

completion.
✦ Resources the process has used.
✦ Resources process needs to complete.
✦ How many processes will need to be terminated.
✦ Is process interactive or batch?

Silberschatz, Galvin and Gagne 20028.39Operating System Concepts

Recovery from Deadlock: Resource Preemption

� Selecting a victim – minimize cost.

� Rollback – return to some safe state, restart process for
that state.

� Starvation – same process may always be picked as
victim, include number of rollback in cost factor.

Silberschatz, Galvin and Gagne 20028.40Operating System Concepts

Combined Approach to Deadlock Handling

� Combine the three basic approaches
✦ prevention
✦ avoidance

✦ detection

 allowing the use of the optimal approach for each of
resources in the system.

� Partition resources into hierarchically ordered classes.

� Use most appropriate technique for handling deadlocks
within each class.

Silberschatz, Galvin and Gagne 20028.41Operating System Concepts

Traffic Deadlock for Exercise 8.4

