
Methods for bounding end-to-end delays on an AFDX network

Hussein Charara, Jean-Luc Scharbarg, Jérôme Ermont, Christian Fraboul
IRIT - ENSEEIHT

2, rue Camichel
31000 Toulouse - France

Hussein.Charara@enseeiht.fr

Abstract

Architectures of avionics networks, such as that of the
Airbus A380, currently know important evolutions. This
is principally due to the increase in the complexity of
the embedded systems, in term of rise in number of inte-
grated functions and their connectivity. The evolution of
Switched Ethernet technologies allows their implementa-
tion as an avionics architecture (AFDX: Avionics Full Du-
plex Switched Ethernet).

The problem is then to prove that no frame will be lost by
the network (no switch queue will overflow) and to evaluate
the end-to-end transfer delay through the network.

The objective of this paper is to present and shortly com-
pare three methods for the evaluation of end-to-end delays:
network calculus, queuing networks simulation and model
checking.

1. Introduction

The evolution of avionics embedded systems and the am-

plification of the integrated functions number in the current

aircraft imply a huge increase in the exchanged data quan-

tity and thus in the number of connections between func-

tions.

To control this complexity, we can benefit from the tech-

nological developments based on the concept of modular

architecture [2, 3]. But the growth of the number of multi

point communication, such as the setting in motion of em-

bedded networks, constitutes one of the major stakes of

new generation architectures. Several avionics architec-

tures were developed but the most of them rest on rather

old means of communication, like the ARINC 429 data

busses which are mono transmitter buses with limited per-

formances (100 Kbits/s) [6].

The solution adopted by Airbus for the new A 380 gen-

eration consists on the utilization of a recognized standard

which allows a re-use of development tools as well as of

existing material components while achieving better per-

formance. It consist of the Switched Ethernet technology

which benefits from a long industrial experiment [4], that

allows to have confidence in the reliability of the material

and on the facility of its maintenance. Hence aeronautical

system can profit of a much more powerful technology than

the traditional avionics bus (Switched Ethernet / 100 Mbps).

The disadvantage of Ethernet, opposite to an avionics

application, is the non intrinsic determinism of its access

method to the physical support, CSMA/CD (which induces

possible collisions on the point-to-point links level) [5].

The solution is thus to use bi-directional links and so Full

Duplex Switched Ethernet (AFDX) [7], where each equip-

ment, in this architecture is only connected to a switch by

the means of a Full Duplex link [8]. This way, there can-

not be any more collisions on the physical support, and the

CSMA/CD is no more necessary [24].

This standardized solution via the ARINC 664, elimi-

nates the inherent indeterminism of the traditional Ethernet

and the collision frame losses. But, the ARINC 664 shifts

in fact the problem to the switch level where various flows

will enter in competition for the use of the resources of the

switch. This problem results in:

• Congestion on the output ports of the switch, if at a

given time too much traffic moves towards one port

only, there will be frame losses by overflow of it

queues.

• Moreover, a burst of traffic, due to a passenger obstruc-

tion on a switch port, can likely encumber the neigh-

bor switch. Thus, congested switches can lead to loss

of frames.

• In the same way, the storage of frames in the switches

queues can involve latency and important jitter.

In order to understand if such congestions can occur in the

network, it is necessary to study the performance of the net-

work. The objective is to measure:

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

• The required crossing delay of the network in order to

allow the applications to preserve their response times.

Network latency is a key performance parameter since

flight-critical data must be delivered on time. Network

latency is defined as the duration of time it takes for a

frame to pass through a network.

• The output queues sizes which allow us to dimension

the frame loss caused by the congestions.

The objective of this paper is to present and shortly com-

pare three methods for the evaluation of end-to-end delays:

network calculus, queuing networks simulation and model

checking.

In a first step, we present main characteristics of an

AFDX network and end-to-end traffic. In a second step, we

compare the network calculus approach on a realistic exam-

ple. In a third step, we compare on a simpler example the

two previous approaches with a model checking approach.

2. The AFDX network main characteristics

In this section, we present main characteristics of the net-

work architecture and the traffic that flows on the network.

2.1. AFDX network architecture

Avionics Full Duplex Switched Ethernet is a static net-

work (802.1D tables are statically set up and no spanning

tree mechanism is implemented). Flows are statically iden-

tified in order to obtain a predictable deterministic behavior

of the application on the network architecture.

An example network architecture is depicted on figure

1. It corresponds to a test configuration provided by Airbus

for a previous study [22]. It is composed of several inter-

connected switches. There is at most 24 ports per switch

(8 on this example). There are no buffers on input ports

and one FIFO buffer for each output port. The inputs and

outputs of the networks are called End Systems (the little

circles on figure 1). Each End System is connected to ex-

actly one switch port and each switch port is connected to at

most one End System. Links between switches are all full

duplex. On figure 1, the values on End Systems indicates

number of flows that are dispatched between End Systems.

Number of input and output End Systems per switch are not

specified on figure 1.

2.2. End-to-end traffic characterization

The Virtual Link is the basis of the Avionics Switched

Ethernet protocol. As defined by ARINC-664, Virtual Link

(VL) is a concept of virtual communication channels; It has

the advantage of statically defining the flows which enters

the network [9].

S1

S2

820113

113 821

S3S8

S4 S7

S6

S5

66 358 132 1156

143 1207 95 457 160 857

142 708

Figure 1. AFDX network architecture

End-Systems exchange Ethernet frames through VL.

Switching a frame from a transmitting to a receiving End

System is based on a VL (deterministic routing). The Vir-

tual Link defines a logical unidirectional connection from

one source End-system to one or more destination End sys-

tems. It is a path with multicast characteristic. Figure 2

shows an example of a multicast Virtual Link, considering

the network architecture of figure 1. Its source End System

is an input of switch S1 and its destination End Systems are

outputs of switches S8, S3, S4 and S7. This VL includes the

four paths S1-S8, S1-S3, S1-S8-S4 and S1-S8-S4-S7 (they

are depicted as plain lines on figure 2).

S3S8

S4 S7

S6

S5S2

S1
src dest1 dest2

dest3 dest4

Figure 2. A multicast Virtual Link

The routing of each VL is statically defined. Only one

End System within the Avionics network can be the source

of one Virtual Link, (i.e., Mono Transmitter assumption).

The objective is to provide a logical isolation of VL: a

given maximum bandwidth is allocated to each VL. Regard-

less of the attempted utilization of a VL by one application,

the available Bandwidth on any other VL is unaffected.

A virtual Link is defined by the following parameters :

• the name of the VL,

• the Bandwidth Allocation Gap (BAG) of the VL,

which corresponds to the minimum delay between the

emission of two consecutive frames of the VL by its

source End System,

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

• the minimum (Smin) and the maximum (Smax)

lengths of the VL frames.

3. Simulation vs network calculus for obtaining
end-to-end delays

We present a comparative evaluation of end-to-end up-

per bound delays using two fundamentally different ap-

proaches:

• the network calculus that analytically derives sure up-

per bounds on delays,

• simulation that gives experimental upper bounds on a

set of scenarios.

The goal is to try to estimate how pessimistic the network

calculus is.

3.1 The network calculus approach

Network Calculus results [16, 17] have been used to de-

scribe VLs by arrival curves [20], and further Network Cal-

culus studies to describe the minimal service offered by net-

work elements [10, 14, 18, 26, 27, 28] The Calculus gives

the latency bound of any elementary network entity and for

those elements that have a queuing capability, a queue-size

bound expressed either in a number of bits or in a number

of frames (with a simple majorization using Smin). Given

an elementary entity that offers a service curve β to an in-

put flow constrained by an arrival curve α , the calculus also

brings the arrival curve α� of the output flow: α� = α φ β

where α φ β is defined by:

α φ β(t) = supu ≥ 0 {(α(t + u) − β(u)}

A Network Calculus tool that propagates these results

on a complete network in a dataflow way is able to compute

the latency and queue-size bounds in every element of the

network [20, 23].

The group concept [21, 23] could be used to improve

the Calculus of the AFDX bounds, defining groups of VLs

that exit from the same multiplexer and enter another mul-

tiplexer together, i.e. Virtual Links that share two segments

of path at least. The key issue is that the frames of those VLs

are serialized once exiting the first multiplexer and thus they

dont have to be serialized again in the following multiplex-

ers.

Results presented in this paper don’t consider this im-

provement.

3.2 The queuing network simulation ap-
proach

The simulation approach aims at giving experimental up-

per bounds on a set of scenarios, while the network calcu-

lus analytically derives sure upper bounds on delays [15].

The simulation is based on a queueing network modelling

using QNAP2. The elements of the network will be built

as a queuing station or object structure. They represent

the simple network elements: One-way Links, Buffers, De-

multiplexer, Scheduler Multiplexes. The selected policy of

service is FIFO.

The global simulation model is depicted in figure 3. It is

composed of the following elements:

Routing
 phase

VL Source
VL Source

VL Source
VL Source
VL Source
VL Source
VL Source

Multiplexer
output ports

Fr
am

es
 tr

ea
tm

en
t D

el
ay

Figure 3. Network simulation model

VLs flows emission A VL application flow has a single

source. The emitted flows must be multiplexed by the End

Systems which controls the flow with the concept of Virtual

Links. In this study we use a direct traffic generation at the

switch level (abstracting End Systems since it is assumed

they have no influence on the evaluated end-to-end delay).

An ensured minimum time (BAG) between two consecutive

frames is guaranteed for each VL. The following strategies

can be used for frame generation:

• frames can be generated periodically, using the BAG

as a period,

• frames can be generated sporadically, using the BAG

as a minimum inter emission time,

In this study, we have considered, on the one hand the first

strategy, on the other hand a specific case of the second

strategy where the time between two consecutive frames of

a given VL is always a multiple of the BAG. The goal is

to evaluate the influence of BAG occupation on end-to-end

delays.

Another parameter of the system is the phasing between

VLs. In this study, we experiment two scenarios:

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

• the synchronized one, in which the first frame of every

VL is transmitted at the same time,

• the desynchronized one, in which we associate to each

VL a phase randomly distributed between 0 and its

BAG.

The last parameter is the frame size associated to each VL.

It has been mentioned earlier that it is comprised between a

minimum and a maximum value. In this study, we always

consider the following cases:

• the minimum length for every frame of every VL,

• the maximum length for every frame of every VL,

• the average length between the minimum and the max-

imum ones for every frame of every VL,

• a random length between the minimum and the maxi-

mum ones for every frames of every VL

The goal is to evaluate the influence of frame lengths on

end-to-end delays.

VLs routing The objective is to model the switching

and supported functions. The switches used in Avionics

Switched Ethernet performs 802.1D bridging based on Vir-

tual Link ID. Each switch is configured with a static bridg-

ing table. This table defines the Virtual Link assignment to

physical network ports. As a frame is received, its Virtual

Link ID is checked against the configuration table to route

the frame to its destination port(s). A switch can be consid-

ered as a matrix of 100 Mbps connections.

For this study we consider that the switch only performs

filtering and forwarding operations, modelled by a bounded

delay (0.016ms for each frame routing).

The servicing policy on each output port file is FIFO, as

described earlier. The service time depends on the capacity

of the physical layer (100 Mbps) and the frame size. The

delay depends on the number of frames in the output port

file.

3.3. A realistic network configuration

In this section, we present a realistic network configura-

tion on which we will evaluate worst-case end-to-end de-

lays on VL paths. This configuration is implemented on the

network architecture of figure 1. As already mentioned in

section 2.1, it corresponds to a test configuration provided

by Airbus for a previous study [22]. Values on input and

output End Systems of each switch gives respectively the

number of VL generated and received by the correspond-

ing End Systems. For each switch, we have considered as a

whole, on the one hand the input End Systems, on the other

hand the output End Systems. The configuration includes a

S \ D 1 2 3 4 5 6 7 8

1 71 78 34

2 72 77 34

3 90 212 35 42 52

4 97 134 37 35 48

5 80 72 64

6 82 61 52

7 52 47 59 67

8 51 45 43 52

Table 1. Total of VL from switch S to switch D

Bag Number Frame length Number

(ms) of VL (bytes) of VL

2 20 0-150 561

4 40 151-300 202

8 78 301-600 114

16 142 601-900 57

32 229 901-1200 12

64 220 1201-1500 35

128 255 > 1500 3

Table 2. Bags and frame lengths

total of 964 VL and 6384 paths (due to multicasting). Ta-

ble 1 gives the number of VL from each switch S to each

switch D. The left part of table 2 gives the dispatching of

VL among BAGs. It can be seen that BAGs are harmonic

between 2 and 128 and that the larger a BAG the more it is

used. The right part of table 2 gives the dispatching of VL

among frame lengths, considering the minimum value asso-

ciated with each value. The majority of VL consider short

frames. Table 3 gives the dispatching of VL paths among

the number of crossed switches. In our application, a VL

path crosses at most four switches.

Figure 4 shows an overview of the load of the network.

More precisely, it gives the number of physical link for each

possible load. The load of a physical link is defined as the

portion of time a link is busy. Physical links are lightly

loaded for our application.

Nb of crossed switches Number of paths

1 1797

2 2787

3 1537

4 291

Table 3. VL paths lengths

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.05 0.1 0.15 0.2 0.25 0.3

nu
m

be
r o

f l
in

k

output link load

Number of links

Figure 4. Overall network load

3.4 Comparison of the two approaches

We have conducted an evaluation of end-to-end delays

on the network configuration presented in section 3.3, using

on the one hand the network calculus approach explained

in section 3.1, on the other hand the simulation model pre-

sented in section 3.2. The first goal is to evaluate how pes-

simistic network calculus results are. Figure 5 compares

end-to-end-delays obtained by both approaches under the

following hypothesis for the simulation:

• frames are generated periodically, using the BAG as a

period,

• the minimum length is considered for every frame of

every VL.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100

N
um

be
r o

f V
L

 p
at

hs

Simulation/network calculus ratio

Null phasing
Random phasing

Figure 5. Simulation versus network calculus

More precisely, we have computed for each Virtual Link

path the ratio the end-to-end delay obtained by simulation

and the one calculated with the network calculus approach.

Figure 5 shows the distribution of this ratio for two simula-

tion configuration.

In the first one (null phasing), all VL are synchronous.

It means that they all initiate their first frame at the same

time. Results show that, for most of the VL paths, the ratio

is between 5 % and 40 %. Moreover, all VL paths with a

ratio of at least 70 % have a length of 1 (they cross a single

switch). This corroborate the property that the determinis-

tic upper bound obtained by the network calculus approach

is reachable mostly in case of single switching communica-

tion level.

In the second simulation configuration (random phas-

ing), VL are desynchronized by applying to each of them a

specific random delay before the emission of its first frame.

For each VL, the delay is chosen between 0 and its BAG.

Results show that, for all VL paths, the ratio is under 20 %.

Then, we have studied the influence of BAG occupation

on end to end delays. Figure 6 takes the all BAG occupation

case as a reference and shows the dispatching of end-to-

end delays variations for the randomized BAG occupation

cases of 80 %, 50 %, 30 % and 10 %. Values under 100 on

the abscissa correspond to smaller end-to-end delays than

for the all BAG occupation case, while values other 100

correspond to bigger ones. Results show that end-to-end

delays globally decrease with BAG occupation. However,

for some VL paths, the end-to-end delay increases with the

decreasing of other VL BAG occupation. That means that a

simulation of the case where all BAG are occupied does not

always lead to a worst-case end-to-end delay.

Figure 6. BAG occupation influence

Next, we have studied the influence of frame lengths on

end-to-end delays. Figure 7 takes the minimum length case

as a reference and shows the dispatching of end-to-end de-

lays variations for the mean length case (average between

minimum and maximum length), the maximum length case

and the random length case (between minimum and maxi-

mum length). Values under 100 on the abscissa correspond

to smaller end-to-end delays than for the all BAG occupa-

tion case, while values other 100 correspond to bigger ones.

Results show that end-to-end delays globally increase with

frame lengths. More precisely, the average variations for

the mean length and maximum length cases are respectively

129 and 157. However, as previously stated concerning

BAG occupation, the end-to-end delay of some VL paths

decreases with the increasing of other VL frame lengths.

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

Concerning the random length case, the average variation is

144, that is more than for the mean length case. This is due

to the fact that we measure a worst-case end-to-end delay.

It is globally encountered when frame lengths are closer to

the maximal values.

Figure 7. Frame lengths influence

The simulations that have been conducted are clearly

insufficient to evaluate precisely the pessimistic degree of

the network calculus approach. Obviously, the null phas-

ing configuration is often quite close from the worst-case

configuration. However, we will study in section 4 a sim-

ple example with a classical VL configuration, where null

phasing is not the worst-case configuration. Moreover, one

goal of simulations is to obtain the repartition of worst-case

end-to-end delays on a representative set of scenarios. The

simulations we have conducted are a first step to reach this

goal. Much more has to be done, especially concerning the

phasing of VL.

However, we are convinced that results we have obtained

with the network calculus approach are too pessimistic and

could be improved. In order to do that, we can use the group

concept [21]. A different solution will be presented in sec-

tion 4. It is based on timed automata and model checking.

Coming back to the experiments we have conducted, we

have studied the relationship between the end-to-end delay

of a VL path and its length (number of switches it crosses),

path congruence and switch congruence. The congruence

of an output port is defined as the total number of VL that

crosses this port. The path congruence of a VL path is

the sum of the congruences of the output ports it crosses.

The switch congruence of a VL path is its path congru-

ence divided by its length. As an example, consider the

VL path S1-S8-S4 on the network configuration of figure 1.

Its length is 3, its path congruence is 207 (34 + 52 + 121),

121 being the congruence of the port on which it exits from

switch S4. The switch congruence of this VL path is then
207

3
= 69.

Figure 8 shows the path and switch congruences as func-

tions of the end-to-end delay for both simulation and net-

work calculus approaches.

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

m
ea

n
co

ng
ru

en
ce

end to end delay

simu path
simu switch

NC path
NC switch

Figure 8. Delay as a function of congruence

Concerning the simulation approach, the simu path curve

shows that the path congruence grows rapidly with the end-

to-end delay. Meanwhile, the switch congruence (curve

simu switch) grows slowly with the end-to-end delay. Simi-

lar observations can be made with the network calculus ap-

proach.

Figure 9 shows the VL path length as a function of the

end-to-end delay for both simulation and network calculus

approaches.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16

m
ea

n
pa

th
 le

ng
th

end to end delay

simu
NC

Figure 9. Delay as a function of path length

For both approaches, the length first grows with the end-

to-end delay, and then stays quite constant.

Results of figures 8 and 9 shows that path and even

switch congruences are at least as important as path length

to determine the end-to-end delay of a VL path. This is

not surprising, since, as soon as a VL path shares output

ports with many other VL, the transmission time over Eth-

ernet links becomes small compared with the waiting time

in output port buffers. An interesting study should be to

try to express the end-to-end delay of a VL path, knowing

the path length and the path and switch congruence. This

implies especially a more global study on a set of represen-

tative network configurations.

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

4. Performance evaluation by model checking

Two methods for evaluating the worst-case end-to-end

delay of the Switched Ethernet Full Duplex architecture

have been described in previous sections. The Network Cal-

culus and simulation approaches have been applied in this

context. However, it is often difficult to evaluate the quality

of the obtained worst-case end-to-end delay: it is possible

to approach or reach this delay ? As presented in previ-

ous sections, network calculus gives a mathematical upper

bound which is a guaranteed upper bound, but cannot al-

ways be reached. Conversely, simulation gives an experi-

mental bound that can awfully be exceeded (simulation can

miss rare events).

Here, we propose to use a model-checking approach

based on timed automata. This method consists in exploring

all the possible states of the system and will thus determine

an exact worst-case end-to-end delay. It implies to compute

if a propriety, expressed by a timed logic, is verified or not.

Such an approach has already been explored on a slightly

different CAN / Switched Ethernet architecture [19].

To compare the different methods, we consider a sim-

pler example as depicted in Figure 10. It is composed of 5

end-systems. Each one is the transmitter of one VL (named

sendi in the considered system, see figure 10) and 3 Ether-

net switches. For all VLs, the BAG is 4ms and the length

is 500 bytes. So, the transmission delay over one physical

link is 0.040ms. Here, we consider that the routing delay in

the switch is null, as it has no influence on the comparison

of the three methods.

End System 0

End System 1

End System 2

End System 3

End System 4

Switch1

Switch2

Switch3

send0

send1

send2

send3

send8

Figure 10. The considered system

In the following section, we present the timed automata

model and we compare the worst-case end-to-end delay ob-

tained using model-checking, Network Calculus and simu-

lation.

4.1 Modelling with timed automata

Timed automata have been first proposed by Alur and

Dill [11] to describe systems behavior with time. A timed

automaton is a finite automaton with a set of clocks, i.e.
real and positive variables increasing uniformly with time.

Transitions labels are:

• a guard, i.e. a condition on clock values,

• actions,

• updates, which assign new value to clocks.

Composition of timed automata is obtained by synchronous

product. Each action a executed by a first timed automaton

corresponds to an action with the same name a executed in

parallel by a second timed automaton. In other words, a

transition which executes action a can only be done if an-

other transition labeled a is possible. The two transitions are

performed simultaneously. So communication use rendez-

vous mechanism.

Performing transitions requires no times. Conversely,

time can run in nodes. Each node is labeled by an invari-

ant, that is a boolean condition on clocks. Node occupation

is dependent of the invariant. The node is occupied if the

invariant is true.

Timed automata have been extended. One extension is

committed nodes. The goal of these nodes is to ensure

atomicity between consecutive execution of discrete actions

[25]. As an example, consider the three automata of the fig-

ure 11.

s1 s2
m1

A2

s1 s2
m2

A3

m2
s3

m1
s1 s2A1

Figure 11. Example of committed nodes

A1 performs m1 and simultaneously A2 performs m1.

Then A1 performs m2 and simultaneously A3 performs m2.

As s2 of A1 is committed, the two transitions m1 and m2 are

performed simultaneously without time evolution. So, this

extension allows to model broadcast communication mech-

anism through timed automata.

Another extension is timed automata with shared integer

variables. In timed automata with shared integer variables, a

set of variables is shared by timed automata. In such a way,

these values can be consulted and updated by any timed au-

tomata [25, 13].

A system modelled with timed automata can be veri-

fied using model-checking. The reachability analysis is

performed by model-checking. It consists in encoding the

property in terms of reachability of a given node of one of

the automata. So, the property is verified by the reachability

of node if and only if the node is reachable from an initial

configuration. Reachability is decidable and algorithms ex-

ist [25]. Unfortunately, reachability analysis is undecidable

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

on timed automata with shared integer variables, but some

semi-algorithms exist.

In the following subsections, we model the AFDX con-

figuration example depicted on figure 10 using timed au-

tomata with shared integer variables. Properties will be ver-

ified using UPPAAL model-checker [1].

4.1.1 Modelling sending functions

In respect to the BAG delay, we consider that each function

sends a message periodically. This message is represented

by the sendi signal. An example of function in UPPAAL is

depicted in Figure 12.

Start

h<=period
Periodic

h<=period

h<=period
send0!

h:=0 h==periode
send0!
h:=0

Figure 12. Automaton of the function 0

Functions send the signal sendi periodically at exactly

period time (transition from the periodic node in the Fig-

ure). This time period can be delayed initially by letting a

duration time between 0 and period ms to pass (transition

from the start node).

4.1.2 The switch automaton

The switch uses FIFO policy on each queued transmit port.

Each node of the automaton models a location in the queue.

Consequently, the number of nodes of the automaton equals

the size of the queue. Figure 13 shows an example of a

queue model transmit port with queue size 3. Each transi-

tion from a node Positioni to a node Positioni+1 of the

automaton models the arrival of one frame at the transmit

port (represented by signals send0 and send1). delay is

the transmission time of the frame. In the considered exam-

ple application, it is the same for every frame, since frame

length is 500 bytes for all VLs. The frame is then transmit-

ted using send4 and send5 corresponding respectively to

send0 and send1 signals.

4.1.3 The global system

The global system is composed of 5 functions and 3

switches as represented in figure 14, where send9 cor-

responds to send0, send10 to send1, send11 to send2,

send12 to send3, and send13 to send8. Each VL is pro-

duced by a separate End System. These components are

modelled by automata as described in previous sections.

The global model is obtained by composition of all au-

Empty

Position1
h<=delay

Position2
h<=delay

Position3
h<=delay

send0?
h:=0, pos1:=0

h==delay && pos1==0
send4!

h==delay && pos1==0
send4!

h:=0, pos1:=pos2

h==delay && pos1==0
send4!

h:=0,
pos1:=pos2,
pos2:=pos3

send1?
h:=0, pos1:=1

send0?
pos2:=0

send1?
pos2:=1

send0?
pos3:=0

send1?
pos3:=1

h==delay && pos1==1
send5! h==delay && pos1==1

send5!
h:=0, pos1:=pos2 h==delay && pos1==1

send5!
h:=0,
pos1:=pos2,
pos2:=pos3

Figure 13. Automaton of a switch queue
receiving two messages from two different
ports

tomata:

System = Switch1||Switch2||Switch3||
F0||F1||F2||F3||F4

F4

F0 send0

F1

F2

F3

send1

send2

send3

send4
send5

send6
send7

send8

send9
send10
send11
send12
send13

Switch1

Switch2

Switch3

Figure 14. The global modelled system

4.1.4 Worst-case delay calculation

In this section, we show how worst-case end-to-end de-

lay can be obtained from the models previously described.

Model-checking is used to determine the global transmis-

sion delay of each frame in the system. The method con-

sists in verifying that a frame is received before a global

transmission delay. In other words, the property to verify

is “given a message mi, the global transmission delay of

the frame framei, noted d(framei) must be lower than a

bounded delay di : d(framei) ≤ di”. The test automata

method can be used to help the verification process. This

method is described in [13, 12] and consists in construct-

ing a test automaton which encodes the considered property.

Then, the model-checking consists in calculating if a reject

node is reachable or not. The test automaton of our property

for frame 0 is depicted in Figure 15.

When a signal send0 is received, the test automaton

waits for bound time units. If h > bound, i.e. no sig-

nal send9 is detected before bound time units, the rejected

node, named unhappy, is reached. The property is false.

So, we compute for each frame the lower value of the global

transmission delay using the model-checker UPPAAL.

The computed worst-case delay for any VL is 0.240ms

in our system. It corresponds to the case where VL send0,

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

S1

S2

unhappy

send0?
h:=0

h:=0

h==bound

send9?

send0? send9?

Figure 15. The test automaton to calculate
the worst-case delay of a frame sent by func-
tion 0

send1, send2 and send3 are synchronous, while VL send8
has a delay phase of 40 μs with the four other ones. This

worst-case delay can be experimented by VL send0, send1,

send2 and send3.

An evaluation by simulation has been undertaken on

the same application. If we consider that all VL are syn-

chronous, the worst-case delay for any VL is 0.2ms and it is

experimented by send0, send1, send2 and send3. A ran-

dom phasing is very unlikely to give the worst-case delay

computed by model checking, since there is a huge number

of possible phasings.

The network calculus approach considering no grouping

has also been processed. It gives a worst-case delay for any

VL of 0.287ms. Obviously, grouping should reduce this

delay, but it will certainly remain over 0.240ms, since it will

consider a pessimistic upper bound on traffic.

The system of figure 10, considered for the comparison,

corresponds to a classical pattern that is depicted on figure

16.

GrVL2

GrVL1

Switch1

Switch2

Figure 16. Generalization of the considered
system

GrVL1 is a group of VL that all merge in Switch1 by the

same input port, cross Switch2 and go out by the same out-

put port. Similarly, GrVL2 is a group of VL that all merge

in Switch2 by the same input port and go out by the same

output port. On the system of figure 10, {send0}, {send1},

{send2} and {send3} are GrVL1 groups, while {send8} is

a GrVL2 one.

What says model-checking is that the worst-case end-to-

end delay is reached when GrVL1 and GrVL2 groups are

synchronous. It can help the simulation approach choosing

a phasing between VL that gives higher end-to-end delays

that the null phasing.

5. Conclusion

In this paper, we presented three different methods for

evaluating end-to-end delays on an avionics full duplex Eth-

ernet. Obtained results strongly depend on ARINC 664 as-

sumptions (Virtual Link static definition).

The network calculus approach gives guaranteed upper

bounds on end-to-end delays that usually cannot be reached,

as it is based on strong pessimistic assumptions. In this pa-

per, we didn’t exploit all the possible improvements of net-

work calculus, especially the grouping concept (frames of

VLs that have been serialized once exiting a multiplexer

don’t have to be serialized again on the following mul-

tiplexer). Moreover, more tight upper bounds of arrival

curves and inter switches traffic could lead to more accu-

rate upper bounds on end-to-end delays. Such an approach

can be very useful for certification reasons.

The simulation approach gives experimental bounds that

can awfully be exceeded, as simulation can miss rare events.

Results presented in this paper only take into account a very

limited set of scenarios that have to be extended. Trying to

drive simulation towards rare events could be a promising

track. Such an approach is valuable for obtaining a global

estimation of the network load.

The model checking approach determines an exact

worst-case end-to-end delay and the corresponding sce-

nario, since it explores all the possible states of the system.

An open question is: can model checking be used on a real-

istic network configuration ? Clearly, the model presented

in this paper will lead to combinatorial explosion. Abstrac-

tion and aggregation techniques are being studied in order

to overcome this problem.

References

[1] http://www.uppaal.com.

[2] ARINC 651, Aeronautical Radio Inc. ARINC specification
651. Design Guidance for Integrated Modular Avionics.,
1991.

[3] ARINC 653, Aeronautical Radio Inc. ARINC specifica-
tion 653. Avionics application Software Standard Interface.,
1997.

[4] IEEE 802.1D, Local and Metropolitan Area Network: Me-
dia Access Control Level Bridging., 1998.

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

[5] IEEE 802.3, Information technology., 1998.

[6] ARINC 429, Aeronautical Radio Inc. ARINC specifica-
tion 429. Digital Information Transfer System (DITS) parts
1,2,3., 2001.

[7] ARINC 664, Aircraft Data Network, Part 1: Systems Con-
cepts and Overview., 2002.

[8] ARINC 664, Aircraft Data Network, Part 2: Ethernet Phys-
ical and Data Link Layer Specification., 2002.

[9] ARINC 664, Aircraft Data Network, Part 7: Deterministic
Networks., 2003.

[10] R. Agrawal, R. Cruz, C. Okino, and R. Rajan. Performance

bounds for flow control protocols. IEEE Transaction on Net-
working, 7(3), June 1999.

[11] R. Alur and D. L. Dill. Theory of Timed Automata. Theo-
ritical Computer Science, 126(2):183–235, 1994.

[12] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit,

L. Petrucci, and Ph. Schnoebelen. Systems and Software Ver-
ification. Model-Checking Techniques and Tools. Springer,

2001.

[13] A. Burgueño Arjona. Vérification et synthèse de systèmes
temporisés par des méthodes d’obervation et d’analyse
paramétrique. PhD thesis, Ecole Nationale Supérieur de

l’Aéronautique et de l’Espace, Toulouse, France, 1998.

[14] C. Chang. On deterministic traffic regulation and service

guarantee: a systematic approach by filtering. IEEE Trans-
actions on Information Theory, 44, May 1998.

[15] H. Charara and C. Fraboul. Modelling and simulation of an

avionics full duplex switched ethernet. In Proceedings of
AICT, Lisboa, Portugal, 2005.

[16] R. Cruz. A calculus for network delay, part I. IEEE Transac-
tions on Information Theory, 37(1):114–131, January 1991.

[17] R. Cruz. A calculus for network delay, part II. IEEE
Transactions on Information Theory, 37(1):132–141, Jan-

uary 1991.

[18] R. Cruz. Quality of service guarantees in virtual circuit

switched networks. IEEE Journal of selected areas in com-
munication, 13(6), August 1995.

[19] J. Ermont, J.-L. Scharbarg, and C. Fraboul. Worst-case anal-

ysis of a mixed can/switched ethernet architecture. In Pro-
ceeding of the Real-Time Networked Systems Conference,

Poitiers, France, 2006.

[20] C. Fraboul and F. Frances. Applicability of Network

Calculus to the AFDX. Technical Report PBAR-JD-

728.0821/2002, 2002.

[21] F. Frances, C. Fraboul, and J. Grieu. Using network calculus

to optimize the AFDX network. In Proceedings of ERTS,

Toulouse, France, 2006.

[22] J. Grieu. Analyse et évaluation de techniques de commu-
tation Ethernet pour l’interconnexion des systèmes avion-
iques. PhD thesis, INP-ENSEEIHT, France, 24 Sept. 2004.

[23] J. Grieu, F. Frances, and C. Fraboul. Preuve de déterminisme

d’un réseau embarqué avionique. In Actes du 10ème Col-
loque Francophone sur l’Ingenierie des Protocoles, Paris,

7-10 Octobre 2003.

[24] J. Jasperneite, P. Neumann, M. Theis, and K. Watson. De-

terministic Real-Time Communication with Switched Ether-

net. In Proceedings of the 4th IEEE International Workshop
on Factory Communication Systems, pages 11–18, Västeras,

Sweden, Aug. 2002. IEEE Press.

[25] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nut-

shell. International Journal on Software Tools for Technol-
ogy Transfer, 1(1–2):134–152, 1997.

[26] J. Le Boudec. Application of network calculus to guaran-

teed service networks. IEEE Transactions on Information
Theory, 44, May 1998.

[27] J.-Y. Le Boudec and P. Thiran. Network Calculus: A The-
ory of Deterministic Queuing Systems for the Internet, vol-

ume 2050 of Lecture Notes in Computer Science. Springer-

Verlag, 2001. ISBN: 3-540-42184-X.
[28] H. Sariowan, R. Cruz, and G. Polyzos. Scheduliing for qual-

ity of service guarantees via service curves. In Proceedings
of the International Conference on Computer Communica-
tions and Networks, Las Vegas, 1995.

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

